Do you want to publish a course? Click here

3D integrated superconducting qubits

152   0   0.0 ( 0 )
 Added by Danna Rosenberg
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence ($T_1$, $T_{2,rm{echo}} > 20,mu$s) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.



rate research

Read More

As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require, access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays -- provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs -- 10 $mu$m wide by 20 $mu$m long by 200 $mu$m deep -- with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.
We report high qubit coherence as well as low crosstalk and single-qubit gate errors in a superconducting circuit architecture that promises to be tileable to 2D lattices of qubits. The architecture integrates an inductively shunted cavity enclosure into a design featuring non-galvanic out-of-plane control wiring and qubits and resonators fabricated on opposing sides of a substrate. The proof-of-principle device features four uncoupled transmon qubits and exhibits average energy relaxation times $T_1=149(38)~mu$s, pure echoed dephasing times $T_{phi,e}=189(34)~mu$s, and single-qubit gate fidelities $F=99.982(4)%$ as measured by simultaneous randomized benchmarking. The 3D integrated nature of the control wiring means that qubits will remain addressable as the architecture is tiled to form larger qubit lattices. Band structure simulations are used to predict that the tiled enclosure will still provide a clean electromagnetic environment to enclosed qubits at arbitrary scale.
Efforts to scale-up quantum computation have reached a point where the principal limiting factor is not the number of qubits, but the entangling gate infidelity. However, the highly detailed system characterization required to understand the underlying error sources is an arduous process and impractical with increasing chip size. Open-loop optimal control techniques allow for the improvement of gates but are limited by the models they are based on. To rectify the situation, we provide an integrated open-source tool-set for Control, Calibration and Characterization, capable of open-loop pulse optimization, model-free calibration, model fitting and refinement. We present a methodology to combine these tools to find a quantitatively accurate system model, high-fidelity gates and an approximate error budget, all based on a high-performance, feature-rich simulator. We illustrate our methods using simulated fixed-frequency superconducting qubits for which we learn model parameters with less than 1% error and derive a coherence limited cross-resonance (CR) gate that achieves 99.6% fidelity without need for calibration.
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emerge from global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable.
In this review, we discuss recent experiments that investigate how the quantum sate of a superconducting qubit evolves during measurement. We provide a pedagogical overview of the measurement process, when the qubit is dispersively coupled to a microwave frequency cavity, and the qubit state is encoded in the phase of a microwave tone that probes the cavity. A continuous measurement record is used to reconstruct the individual quantum trajectories of the qubit state, and quantum state tomography is performed to verify that the state has been tracked accurately. Furthermore, we discuss ensembles of trajectories, time-symmetric evolution, two-qubit trajectories, and potential applications in measurement-based quantum error correction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا