No Arabic abstract
We obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds of constant sectional curvature of space forms, which we call the $L$-transformation. It allows to construct a family of such submanifolds starting with a given one and a vector-valued solution of a system of linear partial differential equations. We prove a decomposition theorem for the $L$-transformation, which is a far-reaching generalization of the classical permutability formula for the Ribaucour transformation of surfaces of constant curvature in Euclidean three space. As a consequence, we derive a Bianchi-cube theorem, which allows to produce, from $k$ initial scalar $L$-transforms of a given submanifold of constant curvature, a whole $k$-dimensional cube all of whose remaining $2^k-(k+1)$ vertices are submanifolds with the same constant sectional curvature given by explicit algebraic formulae. We also obtain further reductions, as well as corresponding decomposition and Bianchi-cube theorems, for the classes of $n$-dimensional flat Lagrangian submanifolds of $mathbb{C}^n$ and $n$-dimensional Lagrangian submanifolds with constant curvature $c$ of the complex projective space $mathbb Cmathbb P^n(4c)$ or the complex hyperbolic space $mathbb Cmathbb H^n(4c)$ of complex dimension $n$ and constant holomorphic curvature~4c.
We prove a converse to well-known results by E. Cartan and J. D. Moore. Let $fcolon M^n_ctoQ^{n+p}_{tilde c}$ be an isometric immersion of a Riemannian manifold with constant sectional curvature $c$ into a space form of curvature $tilde c$, and free of weak-umbilic points if $c>tilde{c}$. We show that the substantial codimension of $f$ is $p=n-1$ if, as shown by Cartan and Moore, the first normal bundle possesses the lowest possible rank $n-1$. These submanifolds are of a class that has been extensively studied due to their many properties. For instance, they are holonomic and admit B{a}cklund and Ribaucour transformations.
We give a new proof of the generalized Minkowski identities relating the higher degree mean curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature manifold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by the author. We develop the notion of position vector field, which lies at the core of the Minkowski identities.
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing.
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.
We show that a closed almost Kahler 4-manifold of globally constant holomorphic sectional curvature $kgeq 0$ with respect to the canonical Hermitian connection is automatically Kahler. The same result holds for $k<0$ if we require in addition that the Ricci curvature is J-invariant. The proofs are based on the observation that such manifolds are self-dual, so that Chern-Weil theory implies useful integral formulas, which are then combined with results from Seiberg--Witten theory.