Do you want to publish a course? Click here

Hamiltonian Monte Carlo Methods for Subset Simulation in Reliability Analysis

107   0   0.0 ( 0 )
 Added by Marco Broccardo
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper studies a non-random-walk Markov Chain Monte Carlo method, namely the Hamiltonian Monte Carlo (HMC) method in the context of Subset Simulation used for structural reliability analysis. The HMC method relies on a deterministic mechanism inspired by Hamiltonian dynamics to propose samples following a target probability distribution. The method alleviates the random walk behavior to achieve a more effective and consistent exploration of the probability space compared to standard Gibbs or Metropolis-Hastings techniques. After a brief review of the basic concepts of the HMC method and its computational details, two algorithms are proposed to facilitate the application of the HMC method to Subset Simulation in structural reliability analysis. Next, the behavior of the two HMC algorithms is illustrated using simple probability distribution models. Finally, the accuracy and efficiency of Subset Simulation employing the two HMC algorithms are tested using various reliability examples. The supporting source code and data are available for download at (the URL that will become available once the paper is accepted).



rate research

Read More

In this paper, we develop Bayesian Hamiltonian Monte Carlo methods for inference in asymmetric GARCH models under different distributions for the error term. We implemented Zero-variance and Hamiltonian Monte Carlo schemes for parameter estimation to try and reduce the standard errors of the estimates thus obtaing more efficient results at the price of a small extra computational cost.
Hamiltonian Monte Carlo (HMC) has been widely adopted in the statistics community because of its ability to sample high-dimensional distributions much more efficiently than other Metropolis-based methods. Despite this, HMC often performs sub-optimally on distributions with high correlations or marginal variances on multiple scales because the resulting stiffness forces the leapfrog integrator in HMC to take an unreasonably small stepsize. We provide intuition as well as a formal analysis showing how these multiscale distributions limit the stepsize of leapfrog and we show how the implicit midpoint method can be used, together with Newton-Krylov iteration, to circumvent this limitation and achieve major efficiency gains. Furthermore, we offer practical guidelines for when to choose between implicit midpoint and leapfrog and what stepsize to use for each method, depending on the distribution being sampled. Unlike previous modifications to HMC, our method is generally applicable to highly non-Gaussian distributions exhibiting multiple scales. We illustrate how our method can provide a dramatic speedup over leapfrog in the context of the No-U-Turn sampler (NUTS) applied to several examples.
We present a method for performing Hamiltonian Monte Carlo that largely eliminates sample rejection for typical hyperparameters. In situations that would normally lead to rejection, instead a longer trajectory is computed until a new state is reached that can be accepted. This is achieved using Markov chain transitions that satisfy the fixed point equation, but do not satisfy detailed balance. The resulting algorithm significantly suppresses the random walk behavior and wasted function evaluations that are typically the consequence of update rejection. We demonstrate a greater than factor of two improvement in mixing time on three test problems. We release the source code as Python and MATLAB packages.
215 - Ajay Jasra , Kody Law , 2017
This article reviews the application of advanced Monte Carlo techniques in the context of Multilevel Monte Carlo (MLMC). MLMC is a strategy employed to compute expectations which can be biased in some sense, for instance, by using the discretization of a associated probability law. The MLMC approach works with a hierarchy of biased approximations which become progressively more accurate and more expensive. Using a telescoping representation of the most accurate approximation, the method is able to reduce the computational cost for a given level of error versus i.i.d. sampling from this latter approximation. All of these ideas originated for cases where exact sampling from couples in the hierarchy is possible. This article considers the case where such exact sampling is not currently possible. We consider Markov chain Monte Carlo and sequential Monte Carlo methods which have been introduced in the literature and we describe different strategies which facilitate the application of MLMC within these methods.
207 - Tore Selland Kleppe 2018
Dynamically rescaled Hamiltonian Monte Carlo (DRHMC) is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameterisation so that the re-parameterised target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterisations of the conditional distributions specifying the hierarchical model are constant information parameterisations (CIP), the relation between the modified- and original parameterisation is bijective, explicitly computed and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of non-linearly dependent latent variables.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا