Do you want to publish a course? Click here

Observation of the Black Widow B1957+20 millisecond pulsar binary system with the MAGIC telescopes

123   0   0.0 ( 0 )
 Added by Julian Sitarek
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

B1957+20 is a millisecond pulsar located in a black widow type compact binary system with a low mass stellar companion. The interaction of the pulsar wind with the companion star wind and/or the interstellar plasma is expected to create plausible conditions for acceleration of electrons to TeV energies and subsequent production of very high energy {gamma} rays in the inverse Compton process. We performed extensive observations with the MAGIC telescopes of B1957+20. We interpret results in the framework of a few different models, namely emission from the vicinity of the millisecond pulsar, the interaction of the pulsar and stellar companion wind region, or bow shock nebula. No significant steady very high energy {gamma}-ray emission was found. We derived a 95% confidence level upper limit of 3.0 x 10 -12 cm -2 s -1 on the average {gamma}-ray emission from the binary system above 200 GeV. The upper limits obtained with MAGIC constrain, for the first time, different models of the high-energy emission in B1957+20. In particular, in the inner mixed wind nebula model with mono-energetic injection of electrons, the acceleration efficiency of electrons is constrained to be below ~(2-10)% of the pulsar spin down power. For the pulsar emission, the obtained upper limits for each emission peak are well above the exponential cut-off fits to the Fermi-LAT data, extrapolated to energies above 50 GeV. The MAGIC upper limits can rule out a simple power-law tail extension through the sub-TeV energy range for the main peak seen at radio frequencies.



rate research

Read More

The most massive neutron stars constrain the behavior of ultra-dense matter, with larger masses possible only for increasingly stiff equations of state. Here, we present evidence that the black widow pulsar, PSR B1957+20, has a high mass. We took spectra of its strongly irradiated companion and found an observed radial-velocity amplitude of K_obs=324+/-3 km/s. Correcting this for the fact that, due to the irradiation, the center of light lies inward relative to the center of mass, we infer a true radial-velocity amplitude of K_2=353+/-4 km/s and a mass ratio q=M_PSR/M_2=69.2+/-0.8. Combined with the inclination i=65+/-2 deg inferred from models of the lightcurve, our best-fit pulsar mass is M_PSR=2.40+/-0.12 M_sun. We discuss possible systematic uncertainties, in particular in the lightcurve modeling. Taking an upper limit of i<85 deg based on the absence of radio eclipses at high frequency, combined with a conservative lower-limit to the motion of the center of mass, K_2>343 km/s (q>67.3), we infer a lower limit to the pulsar mass of M_PSR>1.66 M_sun.
We report on the observations of the Crab pulsar with the MAGIC telesopes. Data were taken both in the mono-mode ($>25$ GeV) and in the stereo-mode ($>50$ GeV). Clear signals from the two peaks were detected with both modes and the phase resolved energy spectra were calculated. By comparing with the measurements done by Fermi-LAT, we found that the energy spectra of the Crab pulsar does not follow a power law with an exponential cutoff, but that it extends as a power law after the break at around 5 GeV. This suggests that the emission above 25 GeV is not dominated by the curvatura radiation, which is inconsistent with the standard prediction of the OG and SG models.
We report the optical identification of the companion to the {it Fermi} black widow millisecond pulsar PSR J1544+4937. We find a highly variable source on Keck LRIS images at the nominal pulsar position, with 2 magnitude variations over orbital period in the B, g, R, and I bands. The nearly achromatic light curves are difficult to explain with a simply irradiated hemisphere model, and suggest that the optical emission is dominated by a nearly isothermal hot patch on the surface of the companion facing the pulsar. We roughly constrain the distance to PSR J1544+4937 to be between 2 and 5 kpc. A more reliable distance measurement is needed in order to constrain the composition of the companion.
67 - Hongjun An , Roger W. Romani , 2018
We report on high-energy properties of the black widow pulsar PSR J2241$-$5236 in the X-ray and the Fermi-LAT (GeV gamma-ray) bands. In the LAT band, the phase-averaged gamma-ray light curve shows orbital modulation below $sim$1 GeV with a chance probability ($p$) monotonically decreasing with time to $psim 10^{-5}$. The peak of the light curve is near the superior conjunction of the pulsar (binary phase $phi_{rm B}approx 0.25$). We attribute the modulation to the intra-binary shock (IBS) emission and search for IBS signatures in the archival X-ray data. We find that the X-ray spectral fit requires a non-thermal component, which implies a possible IBS origin of the X-rays. We discuss our observations in the context of IBS scenarios.
The improvement on the Imaging Air Cherenkov Technique (IACT) led to the discovery of a new type of sources that can emit at very high energies: the gamma-ray binaries. Only six systems are part of this exclusive class. We summarize the latest results from the observations performed with the MAGIC telescopes on different systems as the gamma-ray binary LS I +61$^{circ}$ 303 and the microquasars SS433, V404 Cygni and Cygnus X-1, which are considered potential VHE gamma-ray emitters. The binary system LS I +61$^{circ}$ 303 has been observed by MAGIC in a long-term monitoring campaign. We show the newest results of our search for super-orbital variability also in context of contemporaneous optical observations. Besides, we will present the results of the only super-critical accretor known in our galaxy: SS 433. We will introduce the VHE results achieved with MAGIC after 100 hours of observations on the microquasar Cygnus X-1 and report on the microquasar V404 Cyg, which has been observed with MAGIC after it went through a series of exceptional X-ray outbursts in June 2015.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا