Do you want to publish a course? Click here

On The Critical Casimir Interaction Between Anisotropic Inclusions On A Membrane

52   0   0.0 ( 0 )
 Added by Halim Kusumaatmaja
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a lattice model and a versatile thermodynamic integration scheme, we study the critical Casimir interactions between inclusions embedded in a two-dimensional critical binary mixtures. For single-domain inclusions we demonstrate that the interactions are very long range, and their magnitudes strongly depend on the affinity of the inclusions with the species in the binary mixtures, ranging from repulsive when two inclusions have opposing affinities to attractive when they have the same affinities. When one of the inclusions has no preference for either of the species, we find negligible critical Casimir interactions. For multiple-domain inclusions, mimicking the observations that membrane proteins often have several domains with varying affinities to the surrounding lipid species, the presence of domains with opposing affinities does not cancel the interactions altogether. Instead we can observe both attractive and repulsive interactions depending on their relative orientations. With increasing number of domains per inclusion, the range and magnitude of the effective interactions decrease in a similar fashion to those of electrostatic multipoles. Finally, clusters formed by multiple-domain inclusions can result in an effective affinity patterning due to the anisotropic character of the Casimir interactions between the building blocks.

rate research

Read More

Motivated by recent experiments with confined binary liquid mixtures near their continous demixing phase transition we study the critical behavior of a system, which belongs to the Ising universality class, for the film geometry with one planar wall chemically structured such that there is a laterally alternating adsorption preference for the species of the binary liquid mixture. By means of Monte Carlo simulations and finite-size scaling analysis we determine the critical Casimir force and the corresponding universal scaling function.
A recent Letter [Phys. Rev. Lett. 103, 156101 (2009)] reports the experimental observation of aggregation of colloidal particles dispersed in a liquid mixture of heavy water and 3-methylpyridine. The experimental data are interpreted in terms of a model which accounts solely for the competing effects of the interparticle electrostatic repulsion and of the attractive critical Casimir force. Here we show, however, that the reported aggregation actually occurs within ranges of values of the correlation length and of the Debye screening length ruled out by the proposed model and that a significant part of the experimental data presented in the Letter cannot be consistently interpreted in terms of such a model.
If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy (TIRM), with femto-Newton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.
We study the fluctuation-induced Casimir interactions in colloidal suspensions, especially between colloids immersed in a binary liquid close to its critical demixing point. To simulate these systems, we present a highly efficient cluster Monte Carlo algorithm based on geometric symmetries of the Hamiltonian. Utilizing the principle of universality, the medium is represented by an Ising system while the colloids are areas of spins with fixed orientation. Our results for the Casimir interaction potential between two particles at the critical point in two dimensions perfectly agree with the exact predictions. However, we find that in finite systems the behavior strongly depends on whether the $Z_{2}$ symmetry of the system is broken by the particles. Eventually we present Monte Carlo results for the three-body Casimir interaction potential and take a close look onto the case of one particle in the vicinity of two adjacent particles, which can be calculated from the two-particle interaction by a conformal mapping. These results emphasize the failure of the common decomposition approach for many-particle critical Casimir interactions.
95 - S. Kondrat , L. Harnau , 2009
Based on renormalization group concepts and explicit mean field calculations we study the universal contribution to the effective force and torque acting on an ellipsoidal colloidal particle which is dissolved in a critical fluid and is close to a homogeneous planar substrate. At the same closest distance between the substrate and the surface of the particle, the ellipsoidal particle prefers an orientation parallel to the substrate and the magnitude of the fluctuation induced force is larger than if the orientation of the particle is perpendicular to the substrate. The sign of the critical torque acting on the ellipsoidal particle depends on the type of boundary conditions for the order parameter at the particle and substrate surfaces, and on the pivot with respect to which the particle rotates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا