Do you want to publish a course? Click here

Energy Deposition and Radiation to Electronics

55   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chapter 10 in High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report. The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC.



rate research

Read More

62 - Khaled Alharbi 2020
In the future, International Linear Collider (ILC), a helical undulator based polarized positron source is expected to be chosen. A high energy electron beam passes through a superconducting helical undulator in order to create circularly polarized photons which will be directed to a conversion target, the result of which, will be electron-positron pairs. The resulting positron beam is longitudinally polarized. In order to produce the required number of positrons in ILC250 the full undulator length is needed. Since the photons are created with an opening angle and traveling through a 320 m long undulator, it is expected that the superconducting undulator vacuum will be hit by the photons. Photon masks are needed to be inserted in the undulator line to keep the power deposition in the vacuum below the acceptable limit which is 1W/m. A detailed study of the power deposition in the vacuum and masks is needed in order to design the photon masks. This paper describes the power deposition in the undulator vacuum due to secondary particles assuming an ideal undulator. In addition, the mask model is proposed.
76 - Khaled Alharbi 2019
The positron source of the International Linear Collider is based on a superconducting helical undulator passed by the high-energy electron beam to generate photons which hit a conversion target. Since the photons are circularly polarized the resulting positron beam is polarized. At ILC250, the full undulator is needed to produce the required number of positrons. To keep the power deposition in the undulator walls below the acceptable limit of 1W/m, photon masks must be inserted in the undulator line. The photon mask design requires a detailed study of the power deposition in the walls and masks. This paper describes the power deposition in the undulator wall due to synchrotron radiation.
55 - Khaled Alharbi 2018
Since the undulator wall is being bombarded by photon produced in the ILC helical undulator, masks were installed inside the undulator to protect the superconducting undulator as well as the vacuum. The photon energy spectrum was used to calculate the incident power. HUSR software was used to simulate the photon energy spectrum per meter inside the undulator. The influence of adding masks inside the undulator on the photon polarisation and energy spectrum was also studied.
A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the peak power density averaged over the magnet inner cable width is safely below the quench limit. For the integrated luminosity of 3000 fb -1, the peak dose in the innermost magnet insulator ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good agreement.
99 - N. Simos , Z. Zhong , S. Ghose 2017
A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا