No Arabic abstract
We present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. More importantly, we derive a number of consequences from the model that are independent of parameter values. First, that the ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties invariant across perfusion systems. This conclusion is robust even in the presence of multi-stability, which is explained in our model by the negative feedback loop on cell growth due to toxic byproduct accumulation. Moreover, a complex landscape of steady states in continuous cell culture emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. Thus, in order to actually reflect the expected behavior in perfusion, performance benchmarks of cell-lines and culture media should be carried out in a chemostat.
Metabolic networks are known to be scale free but the evolutionary origin of this structural property is not clearly understood. One way of studying the dynamical process is to compare the metabolic networks of species that have arisen at different points in evolution and hence are related to each other to varying extents. We have compared the reaction sets of each metabolite across and within 15 groups of species. For a given pair of species and a given metabolite, the number $Delta k$ of reactions of the metabolite that appear in the metabolic network of only one species and not the other is a measure of the distance between the two networks. While $Delta k$ is small within groups of related species and large across groups, we find its probability distribution to be $sim (Delta k)^{-gamma}$ where $gamma$ is a universal exponent that is the same within and across groups. This exponent equals, upto statistical uncertainties, the exponent $gamma$ in the scale free degree distribution $sim k^{-gamma}$. We argue that this, as well as our finding that $Delta k$ is approximately linearly correlated with the degree $k$ of the metabolite, is evidence of a `proportionate change process in evolution. We also discuss some molecular mechanisms that might be responsible for such an evolutionary process.
Continuous cultures of mammalian cells are complex systems displaying hallmark phenomena of nonlinear dynamics, such as multi-stability, hysteresis, as well as sharp transitions between different metabolic states. In this context mathematical models may suggest control strategies to steer the system towards desired states. Although even clonal populations are known to exhibit cell-to-cell variability, most of the currently studied models assume that the population is homogeneous. To overcome this limitation, we use the maximum entropy principle to model the phenotypic distribution of cells in a chemostat as a function of the dilution rate. We consider the coupling between cell metabolism and extracellular variables describing the state of the bioreactor and take into account the impact of toxic byproduct accumulation on cell viability. We present a formal solution for the stationary state of the chemostat and show how to apply it in two examples. First, a simplified model of cell metabolism where the exact solution is tractable, and then a genome-scale metabolic network of the Chinese hamster ovary (CHO) cell line. Along the way we discuss several consequences of heterogeneity, such as: qualitative changes in the dynamical landscape of the system, increasing concentrations of byproducts that vanish in the homogeneous case, and larger population sizes.
A wide range of applications and research has been done with genome-scale metabolic models. In this work we describe a methodology for comparing metabolic networks constructed from genome-scale metabolic models and how to apply this comparison in order to infer evolutionary distances between different organisms. Our methodology allows a quantification of the metabolic differences between different species from a broad range of families and even kingdoms. This quantification is then applied in order to reconstruct phylogenetic trees for sets of various organisms.
Background: Nowadays, the reconstruction of genome scale metabolic models is a non-automatized and interactive process based on decision taking. This lengthy process usually requires a full year of one persons work in order to satisfactory collect, analyze and validate the list of all metabolic reactions present in a specific organism. In order to write this list, one manually has to go through a huge amount of genomic, metabolomic and physiological information. Currently, there is no optimal algorithm that allows one to automatically go through all this information and generate the models taking into account probabilistic criteria of unicity and completeness that a biologist would consider. Results: This work presents the automation of a methodology for the reconstruction of genome scale metabolic models for any organism. The methodology that follows is the automatized version of the steps implemented manually for the reconstruction of the genome scale metabolic model of a photosynthetic organism, {it Synechocystis sp. PCC6803}. The steps for the reconstruction are implemented in a computational platform (COPABI) that generates the models from the probabilistic algorithms that have been developed. Conclusions: For validation of the developed algorithm robustness, the metabolic models of several organisms generated by the platform have been studied together with published models that have been manually curated. Network properties of the models like connectivity and average shortest mean path of the different models have been compared and analyzed.
Stem cells can precisely and robustly undergo cellular differentiation and lineage commitment, referred to as stemness. However, how the gene network underlying stemness regulation reliably specifies cell fates is not well understood. To address this question, we applied a recently developed computational method, Random Circuit Perturbation (RACIPE), to a nine-component gene regulatory network (GRN) governing stemness, from which we identified fifteen robust gene states. Among them, four out of the five most probable gene states exhibit gene expression patterns observed in single mouse embryonic cells at 32-cell and 64-cell stages. These gene states can be robustly predicted by the stemness GRN but not by randomiz