Do you want to publish a course? Click here

Quantum propulsion and trapping of nano-objects by inhomogeneity-induced lateral Casimir forces

77   0   0.0 ( 0 )
 Added by Fanglin Bao
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Lateral Casimir force near a laterally-inhomogeneous plate is first revealed by both rigorous simulations and proximity approximations. The inhomogeneity-induced lateral Casimir force provides a novel method to control the lateral motion of nano-objects above the plate, and makes source-free manipulations of them possible. When incorporated with the Casimir repulsion in a fluid, the lateral Casimir force is shown to dominate over Brownian motion and enables long-distance quantum propulsion and firm quantum trapping of nano-objects. Gratings of varying filling factors to mimic micro-scale inhomogeneity also confirm those effects. The idea to design asymmetric distributions of nano-structures paves the way to sophisticated tailoring of the lateral Casimir force.



rate research

Read More

We predict the existence of lateral drag forces near the flat surface of an absorbing slab of an anisotropic material. The forces originate from the fluctuations of the electromagnetic field, when the anisotropy axis of the material forms a certain angle with the surface. In this situation, the spatial spectra of the fluctuating electromagnetic fields becomes asymmetric, different for positive and negative transverse wave vectors components. Differently from the case of van der Waals interactions in which the forward-backward symmetry is broken due to the particle movement or in quantum noncontact friction where it is caused by the mutual motion of the bodies, in our case the lateral motion results merely from the anisotropy of the slab. This new effect, of particular significance in hyperbolic materials, could be used for the manipulation of nanoparticles.
115 - F. Bao , K. Shi , G. Cao 2018
This letter proposes a scheme for transporting nanoparticles immersed in a fluid, relying on quantum vacuum fluctuations. The mechanism lies in the inhomogeneity-induced lateral Casimir force between a nanoparticle and a gradient metasurface, and the relaxation of the conventional Dzyaloshinskiv{i}-Lifshitz-Pitaevskiv{i} constraint, which allows quantum levitation for a broader class of material configurations. The velocity for a nanosphere levitated above a grating is calculated and can be up to a few microns per minute. The Born approximation gives general expressions for the Casimir energy which reveal size-selective transport. For any given metasurface, a certain particle-metasurface separation exists where the transport velocity peaks, forming a Casimir passage. The sign and strength of the Casimir interactions can be tuned by the shapes of liquid-air menisci, potentially allowing real-time control of an otherwise passive force, and enabling interesting on-off or directional switching of the transport process.
64 - F. Bao , K. Shi 2018
The widely-adopted proximity-force approximation (PFA) to estimate normal Casimir forces is known to be asymptotically exact at vanishing separations. In this letter, we propose a correction to the PFA, which is sufficiently accurate in predicting displacement-induced lateral Casimir forces between a sphere and a grating, for separation-to-radius ratio up to 0.5, far beyond the limit within which the application of PFA is previously restricted. Our result allows convenient estimation of Casimir interactions and thus shall be useful in relevant experimental and engineering Casimir applications. We also study the PFA for gradient gratings, and we find that the inhomogeneity-induced lateral Casimir force is beyond the corrected PFA.
Critical Casimir forces emerge between objects, such as colloidal particles, whenever their surfaces spatially confine the fluctuations of the order parameter of a critical liquid used as a solvent. These forces act at short but microscopically large distances between these objects, reaching often hundreds of nanometers. Keeping colloids at such distances is a major experimental challenge, which can be addressed by the means of optical tweezers. Here, we review how optical tweezers have been successfully used to quantitatively study critical Casimir forces acting on particles in suspensions. As we will see, the use of optical tweezers to experimentally study critical Casimir forces can play a crucial role in developing nano-technologies, representing an innovative way to realize self-assembled devices at the nano- and microscale.
53 - Kun Ding , Han Hu , T. C. Leung 2017
Recent advances in nanotechnology have created tremendous excitement across different disciplines but in order to fully control and manipulate nano-scale objects, we must understand the forces at work at the nano-scale, which can be very different from those that dominate the macro-scale. We show that there is a new kind of curvature-induced force that acts between nano-corrugated electrically neutral plasmonic surfaces. Absent in flat surfaces, such a force owes its existence entirely to geometric curvature, and originates from the kinetic energy associated with the electron density which tends to make the profile of the electron density smoother than that of the ionic background and hence induces curvature-induced local charges. Such a force cannot be found using standard classical electromagnetic approaches, and we use a self-consistent hydrodynamics model as well as first principles density functional calculations to explore the character of such forces. These two methods give qualitative similar results. We found that the force can be attractive or repulsive, depending on the details of the nano-corrugation, and its magnitude is comparable to light induced forces acting on plasmonic nano-objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا