No Arabic abstract
We analyze the scattering of fermions, Higgs and electroweak gauge bosons in order to obtain the partial-wave unitarity bounds on dimension-six effective operators, including those involving fermions. We also quantify whether, at the LHC energies, the dimension-six operators lead to unitarity violation after taking into account the presently available constraints on their Wilson coefficients. Our results show that for most dimension-six operators relevant for the LHC physics there is no unitarity violation at the LHC energies, and consequently, there is no need for the introduction of form factors in the experimental and phenomenological analyses, making them model independent. We also identify two operators for which unitarity violation is still an issue at the LHC Run-II.
We obtain the partial-wave unitarity constraints on dimension-six operators stemming from the analyses of vector boson and Higgs scattering processes as well as the inelastic scattering of standard model fermions into electroweak gauge bosons. We take into account all coupled channels, all possible helicity amplitudes, and explore a six-dimensional parameter space of anomalous couplings. Our analysis shows that for those operators affecting the Higgs couplings, present 90% confidence level constraints from global data analysis of Higgs and electroweak data are such that unitarity is not violated if $sqrt{s}leq 3.2;{rm TeV}$. For the purely gauge-boson operator $O_{WWW}$, the present bounds from triple-gauge boson analysis indicate that within its presently allowed 90% confidence level range unitarity can be violated in $fbar f to V V$ at center-of-mass energy $sqrt{s}geq 2.4;{rm TeV}$.
We calculate the one-loop anomalous dimension matrix for the dimension-six baryon number violating operators of the Standard Model effective field theory, including right-handed neutrino fields. We discuss the flavor structure of the renormalization group evolution in the contexts of minimal flavor violation and unification.
In this paper, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models.
We study the indirect effects of New Physics in the Higgs decay into four charged leptons, using an Effective Field Theory (EFT) approach to Higgs interactions. We evaluate the deviations induced by the EFT dimension-six operators in observables like partial decay width and various kinematic distributions, including angular observables, and compare them with the contribution of the full SM electroweak corrections. The calculation is implemented in an improved version of the event generator Hto4l, which can provide predictions in terms of different EFT-bases and is available for data analysis at the LHC. We also perform a phenomenological study in order to assess the benefits coming from the inclusion of differential information in the future analyses of very precise data which will be collected during the high luminosity phase of the LHC.
We derive, in the framework of soft-collinear effective field theory (SCET), a Lagrangian describing the $t$-channel exchange of Glauber quarks in the Regge limit. The Glauber quarks are not dynamical, but are incorporated through non-local fermionic potential operators. These operators are power suppressed in $|t|/s$ relative to those describing Glauber gluon exchange, but give the first non-vanishing contributions in the Regge limit to processes such as $qbar q to gg$ and $qbar q to gamma gamma$. They therefore represent an interesting subset of power corrections to study. The structure of the operators, which describe certain soft and collinear emissions to all orders through Wilson lines, is derived from the symmetries of the effective theory combined with constraints from power and mass dimension counting, as well as through explicit matching calculations. Lightcone singularities in the fermionic potentials are regulated using a rapidity regulator, whose corresponding renormalization group evolution gives rise to the Reggeization of the quark at the amplitude level and the BFKL equation at the cross section level. We verify this at one-loop, deriving the Regge trajectory of the quark in the $3$ color channel, as well as the leading logarithmic BFKL equation. Results in the $bar 6$ and $15$ color channels are obtained by the simultaneous exchange of a Glauber quark and a Glauber gluon. SCET with quark and gluon Glauber operators therefore provides a framework to systematically study the structure of QCD amplitudes in the Regge limit, and derive constraints on higher order amplitudes.