No Arabic abstract
The imminent advent of very large-scale optical sky surveys, such as Euclid and LSST, makes it important to find efficient ways of discovering rare objects such as strong gravitational lens systems, where a background object is multiply gravitationally imaged by a foreground mass. As well as finding the lens systems, it is important to reject false positives due to intrinsic structure in galaxies, and much work is in progress with machine learning algorithms such as neural networks in order to achieve both these aims. We present and discuss a Support Vector Machine (SVM) algorithm which makes use of a Gabor filterbank in order to provide learning criteria for separation of lenses and non-lenses, and demonstrate using blind challenges that under certain circumstances it is a particularly efficient algorithm for rejecting false positives. We compare the SVM engine with a large-scale human examination of 100000 simulated lenses in a challenge dataset, and also apply the SVM method to survey images from the Kilo-Degree Survey.
We propose a method for support vector machine classification using indefinite kernels. Instead of directly minimizing or stabilizing a nonconvex loss function, our algorithm simultaneously computes support vectors and a proxy kernel matrix used in forming the loss. This can be interpreted as a penalized kernel learning problem where indefinite kernel matrices are treated as a noisy observations of a true Mercer kernel. Our formulation keeps the problem convex and relatively large problems can be solved efficiently using the projected gradient or analytic center cutting plane methods. We compare the performance of our technique with other methods on several classic data sets.
We consider a machine learning algorithm to detect and identify strong gravitational lenses on sky images. First, we simulate different artificial but very close to reality images of galaxies, stars and strong lenses, using six different methods, i.e. two for each class. Then we deploy a convolutional neural network architecture to classify these simulated images. We show that after neural network training process one achieves about 93 percent accuracy. As a simple test for the efficiency of the convolutional neural network, we apply it on an real Einstein cross image. Deployed neural network classifies it as gravitational lens, thus opening a way for variety of lens search applications of the deployed machine learning scheme.
We explored the AllWISE catalogue of the Wide-field Infrared Survey Explorer mission and identified Young Stellar Object candidates. Reliable 2MASS and WISE photometric data combined with Planck dust opacity values were used to build our dataset and to find the best classification scheme. A sophisticated statistical method, the Support Vector Machine (SVM) is used to analyse the multi-dimensional data space and to remove source types identified as contaminants (extragalactic sources, main sequence stars, evolved stars and sources related to the interstellar medium). Objects listed in the SIMBAD database are used to identify the already known sources and to train our method. A new all-sky selection of 133,980 Class I/II YSO candidates is presented. The estimated contamination was found to be well below 1% based on comparison with our SIMBAD training set. We also compare our results to that of existing methods and catalogues. The SVM selection process successfully identified >90% of the Class I/II YSOs based on comparison with photometric and spectroscopic YSO catalogues. Our conclusion is that by using the SVM, our classification is able to identify more known YSOs of the training sample than other methods based on colour-colour and magnitude-colour selection. The distribution of the YSO candidates well correlates with that of the Planck Galactic Cold Clumps in the Taurus--Auriga--Perseus--California region.
In this paper we develop a new unsupervised machine learning technique comprised of a feature extractor, a convolutional autoencoder (CAE), and a clustering algorithm consisting of a Bayesian Gaussian mixture model (BGM). We apply this technique to visual band space-based simulated imaging data from the Euclid Space Telescope using data from the Strong Gravitational Lenses Finding Challenge. Our technique promisingly captures a variety of lensing features such as Einstein rings with different radii, distorted arc structures, etc, without using predefined labels. After the clustering process, we obtain several classification clusters separated by different visual features which are seen in the images. Our method successfully picks up $sim$63 percent of lensing images from all lenses in the training set. With the assumed probability proposed in this study, this technique reaches an accuracy of $77.25pm 0.48$% in binary classification using the training set. Additionally, our unsupervised clustering process can be used as the preliminary classification for future surveys of lenses to efficiently select targets and to speed up the labelling process. As the starting point of the astronomical application using this technique, we not only explore the application to gravitationally lensed systems, but also discuss the limitations and potential future uses of this technique.
We present an automated approach to detect and extract information from the astronomical datasets on the shapes of such objects as galaxies, star clusters and, especially, elongated ones such as the gravitational lenses. First, the Kolmogorov stochasticity parameter is used to retrieve the sub-regions that worth further attention. Then we turn to image processing and machine learning Principal Component Analysis algorithm to retrieve the sought objects and reveal the information on their morphologies. We show the capability of our automated method to identify distinct objects, including of and to classify them based on the input parameters. A catalog of possible lensing objects is retrieved as an output of the software, then their inspection is performed for the candidates that survive the filters applied.