Do you want to publish a course? Click here

The footprint of cometary dust analogs: I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

121   0   0.0 ( 0 )
 Added by Lucas Ellerbroek
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-um up to several hundreds of um, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of COSIMA and MIDAS, instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred um) and velocity (up to 6 m/s). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ~ 2 m/s. For velocities below this value, particles either stick and leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities > 2 m/s and sizes > 80 um, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.



rate research

Read More

The structure of cometary dust is a tracer of growth processes in the formation of planetesimals. Instrumentation on board the Rosetta mission to comet 67P/Churyumov- Gerasimenko captured dust particles and analysed them in situ. However, these deposits are a product of a collision within the instrument. We conducted laboratory experiments with cometary dust analogues, simulating the collection process by Rosetta instruments (specifically COSIMA, MIDAS). In Paper I we reported that velocity is a key driver in determining the appearance of deposits. Here in Paper II we use materials with different monomer sizes, and study the effect of tensile strength on the appearance of deposits. We find that mass transfer efficiency increases from $sim$1 up to $sim$10% with increasing monomer diameter from 0.3 $mu$m to 1.5 $mu$m (i.e. tensile strength decreasing from $sim$12 to $sim$3 kPa), and velocities increasing from 0.5 to 6 m/s. Also, the relative abundance of small fragments after impact is higher for material with higher tensile strength. The degeneracy between the effects of velocity and material strength may be lifted by performing a closer study of the deposits. This experimental method makes it possible to estimate the mass transfer efficiency in the COSIMA instrument. Extrapolating these results implies that more than half of the dust collected during the Rosetta mission has not been imaged. We analysed two COSIMA targets containing deposits from single collisions. The collision that occurred closest to perihelion passage led to more small fragments on the target.
We compare low velocity impacts that ricochet with the same impact velocity and impact angle into granular media with similar bulk density, porosity and friction coefficient but different mean grain size. The ratio of projectile diameter to mean grain length ranges from 4 in our coarsest medium to 50 in our finest sand. Using high speed video and fluorescent markers, we measure the ratio of pre- to post-impact horizontal and vertical velocity components, which we refer to as coefficients of restitution, and the angle of deflection caused by the impact in the horizontal plane. Coefficients of restitution are sensitive to mean grain size with the ratio associated with the horizontal velocity component about twice as large for our coarsest gravel as that for our finest sand. This implies that coefficients for hydro-static-like, drag-like and lift-like forces, used in empirical force laws, are sensitive to mean grain size. The coefficient that is most strongly sensitive to grain size is the lift coefficient which decreases by a factor of 3 between our coarsest and finest media. The deflection angles are largest in the coarser media and their size approximately depends on grain size to the 3/2 power. This scaling is matched with a model where momentum transfer takes place via collisions with individual grains. The dependence of impact mechanics on substrate size distribution should be considered in future models for populations of objects that impact granular asteroid surfaces.
We present experimental phase function and degree of linear polarization curves for seven samples of cometary dust analogues namely: ground pieces of Allende, DaG521, FRO95002 and FRO99040 meteorites, Mg-rich olivine and pyroxene, and a sample of organic tholins. The experimental curves have been obtained at the IAA Cosmic Dust Laboratory at a wavelength of 520 nm covering a phase angle range from 3{deg} to 175{deg}. We also provide values of the backscattering enhancement (BCE) for our cometary analogue samples. The final goal of this work is to compare our experimental curves with observational data of comets and asteroids to better constrain the nature of cometary and asteroidal dust grains. All measured phase functions present the typical behavior for mu m-sized cosmic dust grains. Direct comparison with data provided by the OSIRIS/Rosetta camera for comet 67P Churyumov-Gerasimenko reveals significant differences and supports the idea of a coma dominated by big chunks, larger than one micrometer. The polarization curves are qualitatively similar to ground-based observations of comets and asteroids. The position of the inversion polarization angle seems to be dependent on the composition of the grains.We find opposite dependence of the maximum of the polarization curve for grains sizes in the Rayleigh-resonance and geometric optics domains, respectively.
Cometary meteoroid trails exist in the vicinity of comets, forming fine structure of the interplanetary dust cloud. The trails consist predominantly of cometary particles with sizes of approximately 0.1 mm to 1 cm which are ejected at low speeds and remain very close to the comet orbit for several revolutions around the Sun. When re-analysing the Helios dust data measured in the 1970s, Altobelli et al. (2006) recognized a clustering of seven impacts, detected in a very narrow region of space at a true anomaly angle of 135 deg, which the authors considered as potential cometary trail particles. We re-analyse these candidate cometary trail particles to investigate the possibility that some or all of them indeed originate from cometary trails and we constrain their source comets. The Interplanetary Meteoroid Environment for eXploration (IMEX) dust streams in space model is a new universal model for cometary meteoroid streams in the inner solar system, developed by Soja et al. (2015). Using IMEX we study cometary trail traverses by Helios. During ten revolutions around the Sun, and in the narrow region of space where Helios detected the candidate dust particles, the spacecraft repeatedly traversed the trails of comets 45P/Honda-Mrkos-Pajduvsakova and 72P/Denning-Fujikawa. Based on the detection times and particle impact directions, four detected particles are compatible with an origin from these two comets. We find a dust spatial density in these trails of about 10^-8 to 10^-7 m^-3. The in-situ detection and analysis of meteoroid trail particles which can be traced back to their source bodies by spacecraft-based dust analysers opens a new window to remote compositional analysis of comets and asteroids without the necessity to fly a spacecraft to or even land on those celestial bodies. This provides new science opportunities for future missions like Destiny+, Europa Clipper and IMAP.
Dust jets, i.e. fuzzy collimated streams of cometary material arising from the nucleus, have been observed in-situ on all comets since the Giotto mission flew by comet 1P/Halley in 1986. Yet their formation mechanism remains unknown. Several solutions have been proposed, from localized physical mechanisms on the surface/sub-surface (see review in Belton (2010)) to purely dynamical processes involving the focusing of gas flows by the local topography (Crifo et al. 2002). While the latter seems to be responsible for the larger features, high resolution imagery has shown that broad streams are composed of many smaller features (a few meters wide) that connect directly to the nucleus surface. We monitored these jets at high resolution and over several months to understand what are the physical processes driving their formation, and how this affects the surface. Using many images of the same areas with different viewing angles, we performed a 3-dimensional reconstruction of collimated jets, and linked them precisely to their sources on the nucleus. Results.We show here observational evidence that the Northern hemisphere jets of comet 67P arise from areas with sharp topographic changes and describe the physical processes involved. We propose a model in which active cliffs are the main source of jet-like features, and therefore the regions eroding the fastest on comets. We suggest that this is a common mechanism taking place on all comets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا