We investigate the stability of time-periodic solutions of semilinear parabolic problems with Neumann boundary conditions. Such problems are posed on compact submanifolds evolving periodically in time. The discussion is based on the principal eigenvalue of periodic parabolic operators. The study is motivated by biological models on the effect of growth and curvature on patterns formation. The Ricci curvature plays an important role.
We establish necessary conditions for the existence of solutions to a class of semilinear hyperbolic problems on complete noncompact Riemannian manifolds, extending some nonexistence results for the wave operator with power nonlinearity on the whole Euclidean space. A general weight function depending on spacetime is allowed in front of the power nonlinearity.
Given a symmetric Riemannian manifold (M, g), we show some results of genericity for non degenerate sign changing solutions of singularly perturbed nonlinear elliptic problems with respect to the parameters: the positive number {epsilon} and the symmetric metric g. Using these results we obtain a lower bound on the number of non degenerate solutions which change sign exactly once.
We investigate existence and nonexistence of stationary stable nonconstant solutions, i.e. patterns, of semilinear parabolic problems in bounded domains of Riemannian manifolds satisfying Robin boundary conditions. These problems arise in several models in applications, in particular in Mathematical Biology. We point out the role both of the nonlinearity and of geometric objects such as the Ricci curvature of the manifold, the second fundamental form of the boundary of the domain and its mean curvature. Special attention is devoted to surfaces of revolution and to spherically symmetric manifolds, where we prove refined results.
We consider the porous medium equation with a power-like reaction term, posed on Riemannian manifolds. Under certain assumptions on $p$ and $m$ in (1.1), and for small enough nonnegative initial data, we prove existence of global in time solutions, provided that the Sobolev inequality holds on the manifold. Furthermore, when both the Sobolev and the Poincare inequality hold, similar results hold under weaker assumptions on the forcing term. By the same functional analytic methods, we investigate global existence for solutions to the porous medium equation with source term and variable density in ${mathbb R}^n$.
We prove nonexistence of nontrivial, possibly sign changing, stable solutions to a class of quasilinear elliptic equations with a potential on Riemannian manifolds, under suitable weighted volume growth conditions on geodesic balls.