Do you want to publish a course? Click here

IceCube constraints on the Fermi Bubbles

127   0   0.0 ( 0 )
 Added by Uri Keshet
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative $xi_i<8%$ upper limit on the cosmic-ray ion (CRI) acceleration efficiency, and an $etaequiv xi_e/xi_i gtrsim0.006$ lower limit on the electron-to-ion ratio of acceleration efficiencies (at the $2sigma$ confidence level). For typical $xi_i$, a signal should surface once the number of IceCube neutrinos increases by $sim$an order of magnitude, unless there is a $<$PeV cutoff on the CRI spectrum.



rate research

Read More

The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With a large field of view and good sensitivity to spatially extended sources, HAWC is the best observatory suited to look for extended regions like the Fermi Bubbles at TeV energies. We will present results from a preliminary analysis of the Fermi Bubble visible to HAWC in the Galactic Northern Hemisphere during the ICRC conference.
At very-high energies (100 TeV - 1 PeV), the small value of Bjorken-x ($le10^{-3}-10^{-7}$) at which the parton distribution functions are evaluated makes the calculation of charm quark production very difficult. The charm quark has mass ($sim$1.5$pm$0.2 GeV) significantly above the $Lambda$$_{QCD}$ scale ($sim$200 MeV), and therefore its production is perturbatively calculable. However, the uncertainty in the data and the calculations cannot exclude some smaller non-perturbative contribution. To evaluate the prompt neutrino flux, one needs to know the charm production cross-section in pN -> c$bar{c}$ X, and hadronization of charm particles. This contribution briefly discusses computation of prompt neutrino flux and presents the strongest limit on prompt neutrino flux from IceCube.
We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin--Helmholtz, Rayleigh--Taylor, or Richtmyer--Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons that escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the stochastic acceleration, but they are unlikely in the viewpoint of the energy budget.
The existence of diffuse Galactic neutrino production is expected from cosmic ray interactions with Galactic gas and radiation fields. Thus, neutrinos are a unique messenger offering the opportunity to test the products of Galactic cosmic ray interactions up to energies of hundreds of TeV. Here we present a search for this production using ten years of ANTARES track and shower data, as well as seven years of IceCube track data. The data are combined into a joint likelihood test for neutrino emission according to the KRA$_gamma$ model assuming a 5 PeV per nucleon Galactic cosmic ray cutoff. No significant excess is found. As a consequence, the limits presented in this work start constraining the model parameter space for Galactic cosmic ray production and transport.
The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially-extended flux from the entire plane, both maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and an unbroken $E^{-2.5}$ power-law energy spectrum, we set 90% confidence level upper limits constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. (2015a) above 1 TeV. A stacking method is also used to test catalogs of known high energy Galactic gamma-ray sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا