Do you want to publish a course? Click here

Radio polarization maps of shell-type SNRs II. Sedov models with evolution of turbulent magnetic field

56   0   0.0 ( 0 )
 Added by Oleh Petruk
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polarized radio emission has been mapped with great detail in several Galactic supernova remnants (SNRs), but has not yet been exploited to the extent it deserves. We have developed a method to model maps of the Stokes parameters for shell-like SNRs during their Sedov evolution phase. At first, 3-dimensional structure of a SNR has been computed, by modeling the distribution of the magnetohydrodynamic parameters and of the accelerated particles. The generation and dissipation of the turbulent component of magnetic field everywhere in SNR are also considered taking into account its interaction with accelerated particles. Then, in order to model the emission, we have used a generalization of the classical synchrotron theory, valid for the case in which the magnetic field has ordered and disordered components. Finally, 2-dimensional projected maps have been derived, for different orientations of SNR and of interstellar magnetic field with respect to the observer. An important effect to consider is the Faraday rotation of the polarization planes inside the SNR interior. In this paper we present details of the model, and describe general properties of the images.



rate research

Read More

Shock acceleration by the shells of supernova remnants (SNRs) has been hypothesized to be the mechanism that produces the bulk of Galactic Cosmic Rays, possibly up to PeV energies. Some SNRs have been shown to accelerate cosmic rays to TeV energies and above. But which SNRs are indeed efficient accelerators of protons and nuclei? And what is the maximum energy up to which they can efficiently accelerate particles? Measurements of non-thermal emission, especially in the gamma-ray regime, are essential to answer these questions. The High-Altitude Water Cherenkov (HAWC) observatory, surveying the northern TeV gamma-ray sky, is currently the most sensitive wide field-of-view survey instrument in the VHE (very-high-energy, >100 GeV) range and has recorded more than five years of data. The Large Area Telescope (LAT) onboard the Fermi satellite has been surveying the GeV gamma-ray sky for more than ten years. Combining measurements from both instruments allows the study of gamma-ray emission from SNRs over many orders of magnitude in energy. In this presentation, I will show measurements of VHE gamma-ray emission from Fermi-LAT-detected SNRs with the HAWC Observatory.
We use the Bayesian approach to write the posterior probability density for the three-dimensional velocity of a pulsar and for its kinematic age. As a prior, we use the bimodal velocity distribution found in a recent article by Verbunt, Igoshev & Cator (2017). When we compare the kinematic ages with spin-down ages, we find that in general, they agree with each other. In particular, maximum likelihood analysis sets the lower limit for the exponential magnetic field decay timescale at $8$ Myr with a slight preference of $t_mathrm{dec} approx 12$ Myr and compatible with no decay at all. One of the objects in the study, pulsar B0950+08 has kinematic and cooling ages $approx 2$ Myr which is in strong contradiction with its spin-down age $tauapprox 17$ Myr. The 68 per cent credible range for the kinematic age is 1.2--8.0 Myr. We conclude that the most probable explanation for this contradiction is a combination of magnetic field decay and long initial period. Further timing, UV and X-ray observations of B0950+08 are required to constrain its origin and evolution better.
262 - N. Bucciantini 2010
We present a new model for the spectral evolution of Pulsar Wind Nebulae inside Supernova Remnants. The model couples the long-term dynamics of these systems, as derived in the 1-D approximation, with a 1-zone description of the spectral evolution of the emitting plasma. Our goal is to provide a simplified theoretical description that can be used as a tool to put constraints on unknown properties of PWN-SNR systems: a piece of work that is preliminary to any more accurate and sophisticated modeling. In the present paper we apply the newly developed model to a few objects of different ages and luminosities. We find that an injection spectrum in the form of a broken-power law gives a satisfactory description of the emission for all the systems we consider. More surprisingly, we also find that the intrinsic spectral break turns out to be at a similar energy for all sources, in spite of the differences mentioned above. We discuss the implications of our findings on the workings of pulsar magnetospheres, pair multiplicity and on the particle acceleration mechanism(s) that might be at work at the pulsar wind termination shock.
We present new images and continuum spectral analysis for 14 resolved Galactic SNRs selected from the 74 MHz Very Large Array Low-Frequency Sky Survey Redux (VLSSr). We combine new integrated measurements from the VLSSr with flux densities extracted from the GLEAM and measurements from the literature to generate improved continuum spectra. We combine the VLSSr images with publicly available images at 1.4 GHz, to analyse the resolved morphology and spectral index distribution across each SNR. Three of the SNRs, Kepler, G28.6-0.1, and Tycho, have integrated spectra which can be adequately fit with simple power laws. The resolved spectral index map for Tycho confirms internal absorption which was previously detected by the LOFAR, but it is insufficient to affect the fit to the integrated spectrum. For the pulsar wind nebulae G21.5-0.9 and 3C58 we identify high-frequency spectral breaks at 38 and 12 GHz, respectively. A low frequency spectral turnover adequately fits the data of the remaining nine SNRs. For Kes 67, Kes 69, Kes75, and 3C397, we attribute the absorption to ionised gas along the line of sight, possibly from extended HII region envelopes. For W41 the absorption can be attributed to HII regions located in its immediate proximity. Thermal absorption from interactions at the ionised interface between SNR forward shocks and the surrounding medium were previously identified as responsible for the low frequency turnover in SNR 3C391; our integrated spectrum is consistent with the previous results. We present evidence for the same phenomenon in three additional SNRs, Kes73, W49B, and 3C396, and derive constraints on the physical properties of the interaction. This result indicates that interactions between SNRs and their environs should be readily detectable through thermal absorption by future low frequency observations of SNRs with improved sensitivity and resolution.
Giant radio relics are the arc-shaped diffuse radio emission regions observed in the outskirts of some merging galaxy clusters. They are believed to trace shock-waves in the intra-cluster medium. Recent observations demonstrated that some prominent radio relics exhibit a steepening above 2 GHz in their radio spectrum. This challenges standard theoretical models because shock acceleration is expected to accelerate electrons to very high energies with a power-law distribution in momentum. In this work we attempt to reconcile these data with the shock-acceleration scenario. We propose that the spectral steepening may be caused by the highest energy electrons emitting preferentially in lower magnetic fields than the bulk of synchrotron bright electrons in relics. Here, we focus on a model with an increasing mag- netic field behind the shock front, which quickly saturates and then declines. We derive the time-evolution of cosmic-ray electron spectra in time variable magnetic fields and an expanding medium. We then apply the formalism on the large radio relic in the cluster CIZA J2242.8+5301 (the Sausage relic). We show that under favourable circumstances of magnetic field amplification downstream, our model can explain the observed radio spectrum, the brightness profile and the spectral index profile of the relic. A possible interpretation for the required amplification of the magnetic field downstream is a dynamo acting behind the shock with an injection scale of magnetic turbulence of about 10 kpc. Our models require injection efficiencies of CRe - which are in tension with simple diffusive shock acceleration from the thermal pool. We show that this problem can likely be alleviated considering pre-existing CRe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا