Do you want to publish a course? Click here

The intergalactic electromagnetic cascade solution for the anomalies from $gamma$-ray blazar observations

65   0   0.0 ( 0 )
 Added by Timur Dzhatdoev
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent progress in very high energy (VHE, E >100 GeV) $gamma$-ray observations, together with advances in the extragalactic background light (EBL) modelling, allows to search for new phenomena such as $gamma$-axion-like particle ($gamma rightarrow$ ALP) oscillation and to explore the extragalactic magnetic field (EGMF) strength and structure. These studies are usually performed by searching for some deviation from the so-called absorption-only model, that accounts for only primary photon absorption on the EBL and adiabatic losses. In fact, there exist several indications that the absorption-only model is incomplete. We present and discuss the intergalactic electromagnetic cascade model (IECM) --- the simplest model that allows to coherently explain all known anomalies. This model has a number of robust signatures that could be searched for with present and future instruments. The IECM model may serve as a new background template, allowing to make future searches for $gamma rightarrow$ ALP oscillation more robust. A detailed account of our calculations is available in astro-ph/1609.01013v2 (A&A,in print).



rate research

Read More

Secondary {gamma}-rays from intergalactic cascades may contribute to observable spectra of blazars, also modifying observable angular and temporal distributions. In this paper we briefly review basic features of intergalactic electromagnetic cascade physics, suggest a new approximation for {gamma}-ray mean free path, consider angular patterns of magnetically broadened cascade emission, and present an example of a fit to the observable blazar spectrum.
Recent detection of the neutrino event, IceCube-170922A by IceCube observatory from the Blazar TXS 0506+056 in the state of enhanced gamma ray emission indicates for acceleration of cosmic rays in the blazar jet. The non-detection of the broadline emission in the optical spectrum of TXS 0506+056 and other BL Lac objects suggests that external photons emissions are weak and hence photo-meson (p-gamma) interaction may not be a favored mechanism for high energy neutrino production. The lack of broadline signatures also creates doubt about the presence of a high density cloud in the vicinity of the super-massive black hole (SMBH) of TXS 0506+056 and consequently raised question on hadronuclear (pp) interaction interpretation like relativistic jet meets with high density cloud. Here we demonstrate that non-relativistic protons in the proton blazar model, those come into existence under charge neutrality condition of the blazar jet, offer sufficient target matter for pp-interaction with shock accelerated protons and consequently the model can describe consistently the observed high energy gamma rays and neutrino signal from the blazar TXS 0506+056.
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.
Context. Most of the studies on extragalactic {gamma}-ray propagation performed up to now only accounted for primary gamma-ray absorption and adiabatic losses (absorption-only model). However, there is growing evidence that this model is oversimplified and must be modified in some way. In particular, it was found that the intensity extrapolated from the optically-thin energy range of some blazar spectra is insufficient to explain the optically-thick part of these spectra. This effect was interpreted as an indication for {gamma}-axion-like particle (ALP) oscillation. On the other hand, there are many hints that a secondary component from electromagnetic cascades initiated by primary {gamma}-rays or nuclei may be observed in the spectra of some blazars. Aims. We study the impact of electromagnetic cascades from primary {gamma}-rays or protons on the physical interpretation of blazar spectra obtained with imaging Cherenkov telescopes. Methods. We use the publicly-available code ELMAG to compute observable spectra of electromagnetic cascades from primary {gamma}-rays. For the case of primary proton, we develop a simple, fast and reasonably accurate hybrid method to calculate the observable spectrum. We perform the fitting of the observed spectral energy distributions (SEDs) with various physical models: the absorption-only model, the electromagnetic cascade model (for the case of primary {gamma}-rays), and sever
We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of $zge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$pm0.3$)$times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$pm0.08$)$times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $Ege100$ GeV) spectral indices are $Gamma=$3.8$pm$0.3, 4.3$pm$0.6 and 4.5$pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than $tau=2$, where it is postulated that any variability would be small and occur on longer than year timescales if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا