No Arabic abstract
We study the hierarchical analogue of power-law random band matrices, a symmetric ensemble of random matrices with independent entries whose variances decay exponentially in the metric induced by the tree topology on $mathbb{N}$. We map out the entirety of the localization regime by proving the localization of eigenfunctions and Poisson statistics of the suitably scaled eigenvalues. Our results complement existing works on complete delocalization and random matrix universality, thereby proving the existence of a phase transition in this model.
The Holstein model describes the motion of a tight-binding tracer particle interacting with a field of quantum harmonic oscillators. We consider this model with an on-site random potential. Provided the hopping amplitude for the particle is small, we prove localization for matrix elements of the resolvent, in particle position and in the field Fock space. These bounds imply a form of dynamical localization for the particle position that leaves open the possibility of resonant tunneling in Fock space between equivalent field configurations.
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we prove that the spectral measures are uniformly $theta$-H{o}lder continuous for all $theta in (0,1)$. In finite volumes, we prove that the corresponding ultrametric random matrices have completely extended eigenfunctions and that the local eigenvalue statistics converge in the Wigner-Dyson-Mehta universality class.
We prove localization and probabilistic bounds on the minimum level spacing for the Anderson tight-binding model on the lattice in any dimension, with single-site potential having a discrete distribution taking N values, with N large.
Rare regions with weak disorder (Griffiths regions) have the potential to spoil localization. We describe a non-perturbative construction of local integrals of motion (LIOMs) for a weakly interacting spin chain in one dimension, under a physically reasonable assumption on the statistics of eigenvalues. We discuss ideas about the situation in higher dimensions, where one can no longer ensure that interactions involving the Griffiths regions are much smaller than the typical energy-level spacing for such regions. We argue that ergodicity is restored in dimension d > 1, although equilibration should be extremely slow, similar to the dynamics of glasses.