Do you want to publish a course? Click here

Diagrammatic Monte-Carlo for weak-coupling expansion of non-Abelian lattice field theories: large-N U(N)xU(N) principal chiral model

320   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop numerical tools for Diagrammatic Monte-Carlo simulations of non-Abelian lattice field theories in the tHooft large-N limit based on the weak-coupling expansion. First we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows to study it directly in the large-N and infinite-volume limits using the Diagrammatic Monte-Carlo approach. On the exactly solvable example of a large-N O(N) sigma model in D=2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of re-summed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly non-perturbative dynamical mass gap. We then develop a Diagrammatic Monte-Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U(N)xU(N) nonlinear sigma model (principal chiral model) in D=2. We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing Diagrammatic Monte-Carlo with conventional Monte-Carlo simulations extrapolated to infinite N, we find a good agreement for the energy density as well as for the critical temperature of the deconfinement transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.



rate research

Read More

Using ultracold alkaline-earth atoms in optical lattices, we construct a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum simulator does not suffer from sign problems and can address the corresponding chiral dynamics in real time.
70 - Ettore Vicari 1992
In order to check the validity and the range of applicability of the 1/N expansion, we performed numerical simulations of the two-dimensional lattice CP(N-1) models at large N, in particular we considered the CP(20) and the CP(40) models. Quantitative agreement with the large-N predictions is found for the correlation length defined by the second moment of the correlation function, the topological susceptibility and the string tension. On the other hand, quantities involving the mass gap are still far from the large-$N$ results showing a very slow approach to the asymptotic regime. To overcome the problems coming from the severe form of critical slowing down observed at large N in the measurement of the topological susceptibility by using standard local algorithms, we performed our simulations implementing the Simulated Tempering method.
In this work we explore the possibility of spontaneous breaking of global symmetries at all nonzero temperatures for conformal field theories (CFTs) in $D = 4$ space-time dimensions. We show that such a symmetry-breaking indeed occurs in certain families of non-supersymmetric large $N$ gauge theories at a planar limit. We also show that this phenomenon is accompanied by the system remaining in a persistent Brout-Englert-Higgs (BEH) phase at any temperature. These analyses are motivated by the work done in arXiv:2005.03676 where symmetry-breaking was observed in all thermal states for certain CFTs in fractional dimensions. In our case, the theories demonstrating the above features have gauge groups which are specific products of $SO(N)$ in one family and $SU(N)$ in the other. Working in a perturbative regime at the $Nrightarrowinfty$ limit, we show that the beta functions in these theories yield circles of fixed points in the space of couplings. We explicitly check this structure up to two loops and then present a proof of its survival under all loop corrections. We show that under certain conditions, an interval on this circle of fixed points demonstrates both the spontaneous breaking of a global symmetry as well as a persistent BEH phase at all nonzero temperatures. The broken global symmetry is $mathbb{Z}_2$ in one family of theories and $U(1)$ in the other. The corresponding order parameters are expectation values of the determinants of bifundamental scalar fields in these theories. We characterize these symmetries as baryon-like symmetries in the respective models.
We utilize a diagrammatic notation for invariant tensors to construct the Young projection operators for the irreducible representations of the unitary group U(n), prove their uniqueness, idempotency, and orthogonality, and rederive the formula for their dimensions. We show that all U(n) invariant scalars (3n-j coefficients) can be constructed and evaluated diagrammatically from these U(n) Young projection operators. We prove that the values of all U(n) 3n-j coefficients are proportional to the dimension of the maximal representation in the coefficient, with the proportionality factor fully determined by its S[k] symmetric group value. We also derive a family of new sum rules for the 3-j and 6-j coefficients, and discuss relations that follow from the negative dimensionality theorem.
232 - Paul Romatschke 2019
In this work, a second-order transport coefficient (the curvature-matter coupling $kappa$) is calculated exactly for the 3+1d O(N) model at large N for any coupling value. Since the theory is `trivial in the sense of possessing a Landau pole, the result for $kappa$ only is free from cut-off artifacts much below the Landau pole in the effective field theory sense. Nevertheless, this leaves a large range of coupling values where this transport coefficient can be determined non-perturbatively and analytically with little ambiguity. Along with thermodyamic results also calculated in this work, I expect exact large N results to provide good quantitative predictions for N=1 scalar field theory with $phi^4$ interaction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا