No Arabic abstract
The purpose of this article is to study the asymptotic expansion of Ray-Singer analytic tosion associated with increasing powers p of a given positive line bundle. Here we prove that the asymptotic expansion associated to a manifold contains only the terms of the form $p^{n-i} log p, p^{n-i}$ for $i$-natural. For the two leading terms it was proved by Bismut and Vasserot in 1989. We will calculate the coefficients of the terms $p^{n-1} log p, p^{n-1}$ in the Kahler case and thus answer the question posed in the recent work of Klevtsov, Ma, Marinescu and Wiegmann about quantuum Hall effect. Our second result concerns the general asymptotic expansion of Ray-Singer analytic torsion for an orbifold.
In this note we obtain the characterization for asymptotic directions on various subgroups of the diffeomorphism group. We give a simple proof of non-existence of such directions for area-preserving diffeomorphisms of closed surfaces of non-zero curvature. Finally, we exhibit the common origin of the Monge-Ampere equations in 2D fluid dynamics and mass transport.
We compute the analytic torsion of a cone over a sphere of dimension 1, 2, and 3, and we conjecture a general formula for the cone over an odd dimensional sphere.
In this paper, we will provide a review of the geometric construction, proposed by Witten, of the SU(n) quantum representations of the mapping class groups which are part of the Reshetikhin-Turaev TQFT for the quantum group U_q(sl(n, C)). In particular, we recall the differential geometric construction of Hitchins projectively flat connection in the bundle over Teichmuller space obtained by push-forward of the determinant line bundle over the moduli space of rank n, fixed determinant, semi-stable bundles fibering over Teichmuller space. We recall the relation between the Hitchin connection and Toeplitz operators which was first used by the first named author to prove the asymptotic faithfulness of the SU(n) quantum representations of the mapping class groups. We further review the construction of the formal Hitchin connection, and we discuss its relation to the full asymptotic expansion of the curve operators of Topological Quantum Field Theory. We then go on to identifying the first terms in the formal parallel transport of the Hitchin connection explicitly. This allows us to identify the first terms in the resulting star product on functions on the moduli space. This is seen to agree with the first term in the star product on holonomy functions on these moduli spaces defined by Andersen, Mattes and Reshetikhin.
We give an explicit formula for the $L^2$ analytic torsion of the finite metric cone over an oriented compact connected Riemannian manifold. We provide an interpretation of the different factors appearing in this formula. We prove that the analytic torsion of the cone is the finite part of the limit obtained collapsing one of the boundaries, of the ratio of the analytic torsion of the frustum to a regularising factor. We show that the regularising factor comes from the set of the non square integrable eigenfunctions of the Laplace Beltrami operator on the cone.
We shall give a twisted Dirac structure on the space of irreducible connections on a SU(n)-bundle over a three-manifold, and give a family of twisted Dirac structures on the space of irreducible connections on the trivial SU(n)-bundle over a four-manifold. The twist is described by the Cartan 3-form on the space of connections. It vanishes over the subspace of flat connections. So the spaces of flat connections are endowed with ( non-twisted ) Dirac structures. The Dirac structure on the space of flat connections over the three-manifold is obtained as the boundary restriction of a corresponding Dirac structure over the four-manifold. We discuss also the action of the group of gauge transformations over these Dirac structures.