The reconstruction of tachyon inflationary potentials


Abstract in English

We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of $e$-folds before the end of inflation. Using the relation between the observables like $n_s$ and $r$ with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter $w_{re}$ during reheating is a constant. Depending on the model parameters and the value of $w_{re}$, the constraints on $N_{re}$ and $T_{re}$ are different. As $n_s$ increases, the allowed reheating epoch becomes longer for $w_{re}=-1/3$, 0 and $1/6$ while the allowed reheating epoch becomes shorter for $w_{re}=2/3$.

Download