Do you want to publish a course? Click here

Abelian Tensor Models on the Lattice

113   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains ($L=2,3,4,5$) and observe that the spectral statistics exhibits strong evidences in favor of quasi-many body localization.



rate research

Read More

It has recently been demonstrated that the large N limit of a model of fermions charged under the global/gauge symmetry group $O(N)^{q-1}$ agrees with the large $N$ limit of the SYK model. In these notes we investigate aspects of the dynamics of the $O(N)^{q-1}$ theories that differ from their SYK counterparts. We argue that the spectrum of fluctuations about the finite temperature saddle point in these theories has $(q-1)frac{N^2}{2}$ new light modes in addition to the light Schwarzian mode that exists even in the SYK model, suggesting that the bulk dual description of theories differ significantly if they both exist. We also study the thermal partition function of a mass deformed version of the SYK model. At large mass we show that the effective entropy of this theory grows with energy like $E ln E$ (i.e. faster than Hagedorn) up to energies of order $N^2$. The canonical partition function of the model displays a deconfinement or Hawking Page type phase transition at temperatures of order $1/ln N$. We derive these results in the large mass limit but argue that they are qualitatively robust to small corrections in $J/m$.
We study a four-dimensional $U(1)$ gauge theory with the $theta$ angle, which was originally proposed by Cardy and Rabinovici. It is known that the model has the rich phase diagram thanks to the presence of both electrically and magnetically charged particles. We discuss the topological nature of the oblique confinement phase of the model at $theta=pi$, and show how its appearance can be consistent with the anomaly constraint. We also construct the $SL(2,mathbb{Z})$ self-dual theory out of the Cardy-Rabinovici model by gauging a part of its one-form symmetry. This self-duality has a mixed t Hooft anomaly with gravity, and its implications on the phase diagram is uncovered. As the model shares the same global symmetry and t Hooft anomaly with those of $SU(N)$ Yang-Mills theory, studying its topological aspects would provide us more hints to explore possible dynamics of non-Abelian gauge theories with nonzero $theta$ angles.
Central to the AdS/CFT correspondence is a precise relationship between the curvature of an anti-de Sitter (AdS) spacetime and the central charge of the dual conformal field theory (CFT) on its boundary. Our work shows that such a relationship can also be established for tensor network models of AdS/CFT based on regular bulk geometries, leading to an analytical form of the maximal central charges exhibited by the boundary states. We identify a class of tensors based on Majorana dimer states that saturate these bounds in the large curvature limit, while also realizing perfect and block-perfect holographic quantum error correcting codes. Furthermore, the renormalization group description of the resulting model is shown to be analogous to the strong disorder renormalization group, thus giving the first example of an exact quantum error correcting code that gives rise to a well-understood critical system. These systems exhibit a large range of fractional central charges, tunable by the choice of bulk tiling. Our approach thus provides a precise physical interpretation of tensor network models on regular hyperbolic geometries and establishes quantitative connections to a wide range of existing models.
This paper accompanies with our recent work on quantum error correction (QEC) and entanglement spectrum (ES) in tensor networks (arXiv:1806.05007). We propose a general framework for planar tensor network state with tensor constraints as a model for $AdS_3/CFT_2$ correspondence, which could be viewed as a generalization of hyperinvariant tensor networks recently proposed by Evenbly. We elaborate our proposal on tensor chains in a tensor network by tiling $H^2$ space and provide a diagrammatical description for general multi-tensor constraints in terms of tensor chains, which forms a generalized greedy algorithm. The behavior of tensor chains under the action of greedy algorithm is investigated in detail. In particular, for a given set of tensor constraints, a critically protected (CP) tensor chain can be figured out and evaluated by its average reduced interior angle. We classify tensor networks according to their ability of QEC and the flatness of ES. The corresponding geometric description of critical protection over the hyperbolic space is also given.
We study the fermionic spectral density in a strongly correlated quantum system described by a gravity dual. In the presence of periodically modulated chemical potential, which models the effect of the ionic lattice, we explore the shapes of the corresponding Fermi surfaces, defined by the location of peaks in the spectral density at the Fermi level. We find that at strong lattice potentials sectors of the Fermi surface are unexpectedly destroyed and the Fermi surface becomes an arc-like disconnected manifold. We explain this phenomenon in terms of a collision of the Fermi surface pole with zeros of the fermionic Greens function, which are explicitly computable in the holographic dual.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا