No Arabic abstract
The Galex Nearby Young Star Survey (GALNYSS) has yielded a sample of $sim$2000 UV-selected objects that are candidate nearby ($D stackrel{<}{sim}$150 pc), young (age $sim$10--100 Myr), late-type stars. Here, we evaluate the distances and ages of the subsample of (19) GALNYSS stars with Gaia Data Release 1 (DR1) parallax distances $D le 120$ pc. The overall youth of these 19 mid-K to early-M stars is readily apparent from their positions relative to the loci of main sequence stars and giants in Gaia-based color-magnitude and color-color diagrams constructed for all Galex- and WISE-detected stars with parallax measurements included in DR1. The isochronal ages of all 19 stars lie in the range $sim$10--100 Myr. Comparison with Li-based age estimates indicates a handful of these stars may be young main-sequence binaries rather than pre-main sequence stars. Nine of the 19 objects have not previously been considered as nearby, young stars, and all but one of these are found at declinations north of $+$30$^circ$. The Gaia DR1 results presented here indicate that the GALNYSS sample includes several hundred nearby, young stars, a substantial fraction of which have not been previously recognized as having ages $stackrel{<}{sim}$100 Myr.
We present the methods devised to identify the BY Dra variables candidates in Gaia DR2 and infer their variability parameters. BY Dra candidates are pre-selected from their position in the HR diagram, built from Gaia parallaxes, $G$ magnitudes, and $(G_{BP} - G_{RP})$ colours. Since the time evolution of the stellar active region can disrupt the coherence of the signal, segments not much longer than their expected evolution timescale are extracted from the entire photometric time-series and period search algorithms are applied to each segment. For the Gaia DR2, we select sources having similar period in at least two segments as candidates BY Dra. Results are further filtered considering the time series phase coverage and the expected approximate light curve shape. Gaia DR2 includes rotational periods and modulation amplitudes of 147 535 BY Dra candidates. The data unveil the existence of two populations with distinctive period and amplitude distributions. The sample covers 38% of the whole sky when divided in bins (HEALPix) of $approx$0.84 square degrees and we estimate that represents 0.7 -- 5 % of all BY Dra stars potentially detectable by Gaia. The preliminary data contained in Gaia DR2 illustrate the vast and unique information that the mission is going to provide on stellar rotation and magnetic activity. This information, complemented by Gaia exquisite parallaxes, proper motions, and astrophysical parameter, is opening new and unique perspectives for our understanding of the evolution of stellar angular momentum and dynamo action.
It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age <10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members (TWA 33 and TWA 34) of the TW Hydrae Association. Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer (WISE) catalog and they show proper motion and youthful spectroscopic characteristics -- namely Halpha emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess -- the first unambiguous evidence of a dusty circumstellar disk -- around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius Centaurus Complex.
We have extracted PSF-fitted stellar photometry from near-ultraviolet, optical and near-infrared images, obtained with the Hubble Space Telescope, of the nearby (D ~ 5.5 Mpc) SBm galaxy NGC 1311. The ultraviolet and optical data reveal a population of hot main sequence stars with ages of 2-10 Myr. We also find populations of blue supergiants with ages between 10 and 40 Myr and red supergiants with ages between 10 and 100 Myr. Our near-infrared data shows evidence of star formation going back ~1 Gyr, in agreement with previous work. Fits to isochrones indicate a metallicity of Z ~ 0.004. The ratio of blue to red supergiants is consistent with this metallicity. This indicates that NGC 1311 follows the well-known luminosity-metallicity relation for late-type dwarf galaxies. About half of the hot main sequence stars and blue supergiants are found in two regions in the inner part of NGC 1311. These two regions are each about 200 pc across, and thus have crossing times roughly equal to the 10 Myr age we find for the dominant young population. The Luminosity Functions of the supergiants indicate a slowly rising star formation rate (of 0.001 Solar masses per year) from ~100 Myr ago until ~15 Myr ago, followed by a strong enhancement (to 0.01 Solar Masses per year) at ~10 Myr ago. We see no compelling evidence for gaps in the star-forming history of NGC 1311 over the last 100 Myr, and, with lower significance, none over the last Gyr. This argues against a bursting mode, and in favor of a gasping or breathing mode for the recent star-formation history.
New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station (NOFS) are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here is new or updated $VI$ photometry on the Johnson-Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS $JHK_s$ near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Since large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.
We present spectroscopic orbits for the active stars HD 82159 (GS Leo), HD 89959, BD +39 2587 (a visual companion to HD 112733), HD 138157 (OX Ser), HD 143705, and HD 160934. This paper is a sequel to one published in this journal in 2006, with similar avowed intention, by Galvez et al.. They showed only graphs, and gave no data, and no orbital elements apart from the periods (only two of which were correct) and in some cases the eccentricities. Here we provide full information and reliable orbital elements for all the stars apart from HD 160934, which has not completed a cycle since it was first observed for radial velocity.