No Arabic abstract
We discuss the prospects for enhancing absorption and scattering of light from a weakly coupled atom in a high-finesse optical cavity by adding a medium with large, positive group index of refraction. The slow-light effect is known to narrow the cavity transmission spectrum and increase the photon lifetime, but the quality factor of the cavity may not be increased in a metrologically useful sense. Specifically, detection of the weakly coupled atom through either cavity ringdown measurements or the Purcell effect fails to improve with the addition of material slow light. A single-atom model of the dispersive medium helps elucidate why this is the case.
We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 10,000 atoms, to reject technical noise sources, to achieve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.
We investigate the prospects of using two-mode intensity squeezed twin-beams, generated in Rb vapor, to improve the sensitivity of spectroscopic measurements by engaging two-photon Raman transitions. As a proof of principle demonstration, we demonstrated the quantum-enhanced measurements of the Rb $5D_{3/2}$ hyperfine structure with reduced requirements for the Raman pump laser power and Rb vapor number density.
The segmental specific heat ratio of the couple hydrogen bond defines not only the phase of Vapor, Liquid, Ice I and XI phase with a quasisolid phase that shows the negative thermal extensibility but uniquely the slope of density of water ice in different phases. Ice floats because H-O contracts less than O:H expands in the QS phase at cooling.
We report on improvements extending the capabilities of the atom-by-atom assembler described in [Barredo et al., Science 354, 1021 (2016)] that we use to create fully-loaded target arrays of more than 100 single atoms in optical tweezers, starting from randomly-loaded, half-filled initial arrays. We describe four variants of the sorting algorithm that (i) allow decrease the number of moves needed for assembly and (ii) enable the assembly of arbitrary, non-regular target arrays. We finally demonstrate experimentally the performance of this enhanced assembler for a variety of target arrays.
The propagation of light in moving media is dragged by atomic motion. The light-drag effect can be dramatically enhanced by reducing the group velocity with electro-magnetically induced transparency. We demonstrate a systematic procedure to estimate the velocity field of the moving atoms, by holographically reconstructing the complex wavefront of the slow light and to simultaneously retrieve the absorption and phase shift. This large-NA, photon-shot-noise-limited inline coherent imaging technique may assist a wide range of cold atom experiments to access phase space information with in situ and minimally destructive measurements. By faithfully expanding the imaging data from real to complex numbers, the holographic technique also paves a way toward single shot spectroscopic imaging of atomic ensembles, even in presence of atomic density fluctuations.