Do you want to publish a course? Click here

The tunneling radiation of Kehagias-Sfetsos black hole under generalized uncertainty principle

108   0   0.0 ( 0 )
 Added by Hongbo Cheng
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We further the investigation on the Parikh-Kraus-Wilczeck tunneling radiation of Kehagias-Sfetsos black hole under the generalized uncertainty principle. We obtain the entropy difference involving the influence from the inequality. The two terms as generalizations of the Heisenbergs uncertainty promote or retard the emission of this kind of black holes respectively.



rate research

Read More

The Parikh-Kraus-Wilczeck tunneling radiation of black hole involving a $f(R)$ global monopole is considered based on the generalized uncertainty principle. The influences from global monopole, $f(R)$ gravity and the corrections to the uncertainty appear in the expression of black hole entropy difference. It is found that the global monopole and the revision of general relativity both hinder the black hole from emitting the photons. The two parts as corrections to the uncertainty make the entropy difference of this kind of black hole larger or smaller respectively.
220 - Hongbo Cheng , Yue Zhong 2019
We consider the evolution of black hole involving an $f(R)$ global monopole based on the Extended Uncertainty Principle (EUP). The black hole evolutions refer to the instability due to the Parikh-Kraus-Wilczeck tunneling radiation or fragmentation. It is found that the EUP corrections make the entropy difference larger to encourage the black hole to radiate more greatly. We also show that the appearance of the EUP effects result in the black holes division. The influence from global monopole and the revision of general relativity can also adjust the black hole evolution simultaneously, but can not change the final result that the black hole will not be stable because of the EUPs effects.
72 - Ken Matsuno 2021
We consider the Hawking radiation by the tunneling of charged fermions and charged scalar particles from the five-dimensional charged static squashed Kaluza-Klein black hole based on the generalized uncertainty principle. We derive corrections of the Hawking temperature to general relativity, which are related to the energy of the emitted particle, the size of the extra dimension, the charge of the black hole and the quantum effect predicted by the generalized uncertainty principle. It is shown that the quantum correction may slow down the increase of the Hawking temperature, which may lead to the thermodynamic stable remnant after the evaporation of the squashed Kaluza-Klein black hole.
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilczek to various black holes. That is, we use the two-dimensional effective metric, which is obtained by the dimensional reduction near the horizon, as the background metric. By using same manner, we derive both the desired result of the Hawking temperature and the effect of the back reaction associated with the radiation in the squashed Kaluza-Klein black hole background.
Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally flat and breakdown of the area theorem of the horizon for the black holes, we show that the corrections to Hawking temperature by the generaliz
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا