Free energy is energy that is available to do work. Maximizing the free energy gain and the gain in work that can be extracted from a system is important for a wide variety of physical and technological processes, from energy harvesting processes such as photosynthesis to energy storage systems such as fuels and batteries. This paper extends recent results from non-equilibrium thermodynamics and quantum resource theory to derive closed-form solutions for the maximum possible gain in free energy and extractable work that can be obtained by varying the initial states of classical and quantum stochastic processes. Simple formulae allow the comparison the free energy increase for the optimal procedure with that for a sub-optimal procedure. The problem of finding the optimal free-energy harvesting procedure is shown to be convex and solvable via gradient descent.
In this paper we first analyzed the inductive bias underlying the data scattered across complex free energy landscapes (FEL), and exploited it to train deep neural networks which yield reduced and clustered representation for the FEL. Our parametric method, called Information Distilling of Metastability (IDM), is end-to-end differentiable thus scalable to ultra-large dataset. IDM is also a clustering algorithm and is able to cluster the samples in the meantime of reducing the dimensions. Besides, as an unsupervised learning method, IDM differs from many existing dimensionality reduction and clustering methods in that it neither requires a cherry-picked distance metric nor the ground-true number of clusters, and that it can be used to unroll and zoom-in the hierarchical FEL with respect to different timescales. Through multiple experiments, we show that IDM can achieve physically meaningful representations which partition the FEL into well-defined metastable states hence are amenable for downstream tasks such as mechanism analysis and kinetic modeling.
We introduce a novel and powerful method for exploring the properties of the multidimensional free energy surfaces of complex many-body systems by means of a coarse-grained non-Markovian dynamics in the space defined by a few collective coordinates.A characteristic feature of this dynamics is the presence of a history-dependent potential term that, in time, fills the minima in the free energy surface, allowing the efficient exploration and accurate determination of the free energy surface as a function of the collective coordinates. We demonstrate the usefulness of this approach in the case of the dissociation of a NaCl molecule in water and in the study of the conformational changes of a dialanine in solution.
Atypical eigenstates in the form of quantum scars and fragmentation of Hilbert space due to conservation laws provide obstructions to thermalization in the absence of disorder. In certain models with dipole and $U(1)$ conservation, the fragmentation results in subdiffusive transport. In this paper we study the interplay between scarring and weak fragmentation giving rise to anomalous hydrodynamics in a class of one-dimensional spin-1 frustration-free projector Hamiltonians, known as deformed Motzkin chain. The ground states and low-lying excitations of these chains exhibit large entanglement and critical slowdown. We show that at high energies the particular form of the projectors causes the emergence of disjoint Krylov subspaces for open boundary conditions, with an exact quantum scar being embedded in each subspace, leading to slow growth of entanglement and localized dynamics for specific out-of-equilibrium initial states. Furthermore, focusing on infinite temperature, we unveil that spin transport is subdiffusive, which we corroborate by simulations of suitable stochastic cellular automaton circuits. Compared to dipole moment conserving systems, the deformed Motzkin chain appears to belong to a different universality class with distinct dynamical transport exponent and only polynomially many Krylov subspaces.
We present a method for determining the free energy dependence on a selected number of collective variables using an adaptive bias. The formalism provides a unified description which has metadynamics and canonical sampling as limiting cases. Convergence and errors can be rigorously and easily controlled. The parameters of the simulation can be tuned so as to focus the computational effort only on the physically relevant regions of the order parameter space. The algorithm is tested on the reconstruction of alanine dipeptide free energy landscape.
Work extraction from the Gibbs ensemble by a cyclic operation is impossible, as represented by the second law of thermodynamics. On the other hand, the eigenstate thermalization hypothesis (ETH) states that just a single energy eigenstate can describe a thermal equilibrium state. Here we attempt to unify these two perspectives and investigate the second law at the level of individual energy eigenstates, by examining the possibility of extracting work from a single energy eigenstate. Specifically, we performed numerical exact diagonalization of a quench protocol of local Hamiltonians and evaluated the number of work-extractable energy eigenstates. We found that it becomes exactly zero in a finite system size, implying that a positive amount of work cannot be extracted from any energy eigenstate, if one or both of the pre- and the post-quench Hamiltonians are non-integrable. We argue that the mechanism behind this numerical observation is based on the ETH for a non-local observable. Our result implies that quantum chaos, characterized by non-integrability, leads to a stronger version of the second law than the conventional formulation based on the statistical ensembles.