No Arabic abstract
The following strong form of density of definable types is introduced for theories T admitting a fibered dimension function d: given a model M of T and a definable subset X of M^n, there is a definable type p in X, definable over a code for X and of the same d-dimension as X. Both o-minimal theories and the theory of closed ordered differential fields (CODF) are shown to have this property. As an application, we derive a new proof of elimination of imaginaries for CODF.
The text is based on notes from a class entitled {em Model Theory of Berkovich Spaces}, given at the Hebrew University in the fall term of 2009, and retains the flavor of class notes. It includes an exposition of material from cite{hhmcrelle}, cite{hhm} and cite{HL}, regarding definable types in the model completion of the theory of valued fields, and the classification of imaginary sorts. The latter is given a new proof, based on definable types rather than invariant types, and on the notion of {em generic reparametrization}. I also try to bring out the relation to the geometry of cite{HL} - stably dominated definable types as the model theoretic incarnation of a Berkovich point.
We answer two open questions about the model theory of valued differential fields introduced by Scanlon. We show that they eliminate imaginaries in the geometric language introduced by Haskell, Hrushovski and Macpherson and that they have the invariant extension property. These two result follow from an abstract criterion for the density of definable types in enrichments of algebraically closed valued fields. Finally, we show that this theory is metastable.
For certain theories of existentially closed topological differential fields, we show that there is a strong relationship between $mathcal Lcup{D}$-definable sets and their $mathcal L$-reducts, where $mathcal L$ is a relational expansion of the field language and $D$ a symbol for a derivation. This enables us to associate with an $mathcal Lcup{D}$-definable group in models of such theories, a local $mathcal L$-definable group. As a byproduct, we show that in closed ordered differential fields, one has the descending chain condition on centralisers.
We develop topological dynamics for the group of automorphisms of a monster model of any given theory. In particular, we find strong relationships between objects from topological dynamics (such as the generalized Bohr compactification introduced by Glasner) and various Galois groups of the theory in question, obtaining essentially new information about them, e.g. we present the closure of the identity in the Lascar Galois group of the theory as the quotient of a compact, Hausdorff group by a dense subgroup. We apply this to describe the complexity of bounded, invariant equivalence relations, obtaining comprehensive results, subsuming and extending the existing results and answering some open questions from earlier papers. We show that, in a countable theory, any such relation restricted to the set of realizations of a complete type over $emptyset$ is type-definable if and only if it is smooth. Then we show a counterpart of this result for theories in an arbitrary (not necessarily countable) language, obtaining also new information involving relative definability of the relation in question. As a final conclusion we get the following trichotomy. Let $mathfrak{C}$ be a monster model of a countable theory, $p in S(emptyset)$, and $E$ be a bounded, (invariant) Borel (or, more generally, analytic) equivalence relation on $p(mathfrak{C})$. Then, exactly one of the following holds: (1) $E$ is relatively definable (on $p(mathfrak{C})$), smooth, and has finitely many classes, (2) $E$ is not relatively definable, but it is type-definable, smooth, and has $2^{aleph_0}$ classes, (3) $E$ is not type definable and not smooth, and has $2^{aleph_0}$ classes. All the results which we obtain for bounded, invariant equivalence relations carry over to the case of bounded index, invariant subgroups of definable groups.
We continue the study of a class of topological $mathcal{L}$-fields endowed with a generic derivation $delta$, focussing on describing definable groups. We show that one can associate to an $mathcal{L}_{delta}$ definable group a type $mathcal{L}$-definable topological group. We use the group configuration tool in o-minimal structures as developed by K. Peterzil.