Do you want to publish a course? Click here

Duluth at Semeval-2017 Task 7 : Puns upon a midnight dreary, Lexical Semantics for the weak and weary

69   0   0.0 ( 0 )
 Added by Ted Pedersen
 Publication date 2017
and research's language is English
 Authors Ted Pedersen




Ask ChatGPT about the research

This paper describes the Duluth systems that participated in SemEval-2017 Task 7 : Detection and Interpretation of English Puns. The Duluth systems participated in all three subtasks, and relied on methods that included word sense disambiguation and measures of semantic relatedness.



rate research

Read More

187 - Ted Pedersen 2020
This paper describes the Duluth systems that participated in SemEval--2019 Task 6, Identifying and Categorizing Offensive Language in Social Media (OffensEval). For the most part these systems took traditional Machine Learning approaches that built classifiers from lexical features found in manually labeled training data. However, our most successful system for classifying a tweet as offensive (or not) was a rule-based black--list approach, and we also experimented with combining the training data from two different but related SemEval tasks. Our best systems in each of the three OffensEval tasks placed in the middle of the comparative evaluation, ranking 57th of 103 in task A, 39th of 75 in task B, and 44th of 65 in task C.
102 - Ted Pedersen 2017
This paper describes the Duluth systems that participated in Task 14 of SemEval 2016, Semantic Taxonomy Enrichment. There were three related systems in the formal evaluation which are discussed here, along with numerous post--evaluation runs. All of these systems identified synonyms between WordNet and other dictionaries by measuring the gloss overlaps between them. These systems perform better than the random baseline and one post--evaluation variation was within a respectable margin of the median result attained by all participating systems.
113 - Shuning Jin , Ted Pedersen 2018
This paper describes the Duluth UROP systems that participated in SemEval--2018 Task 2, Multilingual Emoji Prediction. We relied on a variety of ensembles made up of classifiers using Naive Bayes, Logistic Regression, and Random Forests. We used unigram and bigram features and tried to offset the skewness of the data through the use of oversampling. Our task evaluation results place us 19th of 48 systems in the English evaluation, and 5th of 21 in the Spanish. After the evaluation we realized that some simple changes to preprocessing could significantly improve our results. After making these changes we attained results that would have placed us sixth in the English evaluation, and second in the Spanish.
This paper describes a system submitted by team BigGreen to LCP 2021 for predicting the lexical complexity of English words in a given context. We assemble a feature engineering-based model with a deep neural network model founded on BERT. While BERT itself performs competitively, our feature engineering-based model helps in extreme cases, eg. separating instances of easy and neutral difficulty. Our handcrafted features comprise a breadth of lexical, semantic, syntactic, and novel phonological measures. Visualizations of BERT attention maps offer insight into potential features that Transformers models may learn when fine-tuned for lexical complexity prediction. Our ensembled predictions score reasonably well for the single word subtask, and we demonstrate how they can be harnessed to perform well on the multi word expression subtask too.
This paper describes the SemEval-2020 shared task Assessing Humor in Edited News Headlines. The tasks dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edite
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا