We study the thermalization, injection, and acceleration of ions with different mass/charge ratios, $A/Z$, in non-relativistic collisionless shocks via hybrid (kinetic ions-fluid electrons) simulations. In general, ions thermalize to a post-shock temperature proportional to $A$. When diffusive shock acceleration is efficient, ions develop a non-thermal tail whose extent scales with $Z$ and whose normalization is enhanced as $(A/Z)^2$, so that incompletely-ionized heavy ions are preferentially accelerated. We discuss how these findings can explain observed heavy-ion enhancements in Galactic cosmic rays.