Correlated atomic wires on substrates. II. Application to Hubbard wires


Abstract in English

In the first part of our theoretical study of correlated atomic wires on substrates, we introduced lattice models for a one-dimensional quantum wire on a three-dimensional substrate and their approximation by quasi-one-dimensional effective ladder models [arXiv:1704.07350]. In this second part, we apply this approach to the case of a correlated wire with a Hubbard-type electron-electron repulsion deposited on an insulating substrate. The ground-state and spectral properties are investigated numerically using the density-matrix renormalization group method and quantum Monte Carlo simulations. As a function of the model parameters, we observe various phases with quasi-one-dimensional low-energy excitations localized in the wire, namely paramagnetic Mott insulators, Luttinger liquids, and spin-$1/2$ Heisenberg chains. The validity of the effective ladder models is assessed by studying the convergence with the number of legs and comparing to the full three-dimensional model. We find that narrow ladder models accurately reproduce the quasi-one-dimensional excitations of the full three-dimensional model but predict only qualitatively whether excitations are localized around the wire or delocalized in the three-dimensional substrate.

Download