Lasing in topological edge states of a 1D lattice


Abstract in English

Topology describes properties that remain unaffected by smooth distortions. Its main hallmark is the emergence of edge states localized at the boundary between regions characterized by distinct topological invariants. This feature offers new opportunities for robust trapping of light in nano- and micro-meter scale systems subject to fabrication imperfections and to environmentally induced deformations. Here we show lasing in such topological edge states of a one-dimensional lattice of polariton micropillars that implements an orbital version of the Su-Schrieffer-Heeger Hamiltonian. We further demonstrate that lasing in these states persists under local deformations of the lattice. These results open the way to the implementation of chiral lasers in systems with broken time-reversal symmetry and, when combined with polariton interactions, to the study of nonlinear topological photonics.

Download