Multi-band Photometry of Trans-Neptunian Objects in the Subaru Hyper Suprime-Cam Survey


Abstract in English

We present a visible multi-band photometry of trans-Neptunian objects (TNOs) observed by the Subaru Telescope in the framework of Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) from March in 2014 to September in 2016. We measured the five broad-band (g, r, i, z, and Y) colors over the wavelength range from 0.4 um to 1.0 um for 30 known TNOs using the HSC-SSP survey data covering ~500 deg2 of sky within +/-30 deg of ecliptic latitude. This dataset allows us to characterize the dynamical classes based on visible reflectance spectra as well as to examine the relationship between colors and the other parameters such as orbital elements. Our results show that the hot classical and scattered populations share similar color distributions, while the cold classical population has a reflective decrease toward shorter wavelength below the i band. Based on the obtained color properties, we found that the TNO sample examined in the present work can be separated into two groups by inclination (I), the low-I population consisting of cold classical objects and high-I population consisting of hot classical and scattered objects. The whole sample exhibits an anti-correlation between colors and inclination, but no significant correlation between colors and semi-major axis, perihelion distance, eccentricity, or absolute magnitude. The color-inclination correlation does not seem to be continuous over the entire inclination range. Rather, it is seen only in the high-I population. We found that the low- and high-I populations are distinguishable in the g-i vs. eccentricity plot, but four high-I objects show g-i colors similar to those of the low-I population. If we exclude these four objects, the high-I objects show a positive correlation between g-i and eccentricity and a negative correlation between g-i and inclination with high significance levels.

Download