Do you want to publish a course? Click here

Hilbert-Poincare series for spaces of commuting elements in Lie groups

69   0   0.0 ( 0 )
 Added by Mentor Stafa
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In this article we study the homology of spaces ${rm Hom}(mathbb{Z}^n,G)$ of ordered pairwise commuting $n$-tuples in a Lie group $G$. We give an explicit formula for the Poincare series of these spaces in terms of invariants of the Weyl group of $G$. By work of Bergeron and Silberman, our results also apply to ${rm Hom}(F_n/Gamma_n^m,G)$, where the subgroups $Gamma_n^m$ are the terms in the descending central series of the free group $F_n$. Finally, we show that there is a stable equivalence between the space ${rm Comm}(G)$ studied by Cohen-Stafa and its nilpotent analogues.

rate research

Read More

In this paper we study homological stability for spaces ${rm Hom}(mathbb{Z}^n,G)$ of pairwise commuting $n$-tuples in a Lie group $G$. We prove that for each $ngeqslant 1$, these spaces satisfy rational homological stability as $G$ ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, ${rm Comm}(G)$ and ${rm B_{com}} G$, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting $n$-tuples in a fixed group $G$ stabilizes as $n$ increases. Our proofs use the theory of representation stability - in particular, the theory of ${rm FI}_W$-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.
81 - Charles Rezk 2016
A 1-truncated compact Lie group is any extension of a finite group by a torus. In this note we compute the homotopy types of $Map_*(BG,BH)$, $Map(BG,BH)$, and $Map(EG, B_GH)^G$ for compact Lie groups $G$ and $H$ with $H$ 1-truncated, showing that they are computed entirely in terms of spaces of homomorphisms from $G$ to $H$. These results generalize the well-known case when $H$ is finite, and the case of $H$ compact abelian due to Lashof, May, and Segal.
131 - Michael Thaddeus 2000
By normalizing the space of commuting pairs of elements in a reductive Lie group G, and the corresponding space for the Langlands dual group, we construct pairs of hyperkahler orbifolds which satisfy the conditions to be mirror partners in the sense of Strominger-Yau-Zaslow. The same holds true for commuting quadruples in a compact Lie group. The Hodge numbers of the mirror partners, or more precisely their orbifold E-polynomials, are shown to agree, as predicted by mirror symmetry. These polynomials are explicitly calculated when G is a quotient of SL(n).
122 - Zhiming Li , Yujun Zhu 2020
By establishing Multiplicative Ergodic Theorem for commutative transformations on a separable infinite dimensional Hilbert space, in this paper, we investigate Pesins entropy formula and SRB measures of a finitely generated random transformations on such space via its commuting generators. Moreover, as an application, we give a formula of Friedlands entropy for certain $C^{2}$ $mathbb{N}^2$-actions.
We define and study non-abelian Poincare series for the group $G=mathrm{SU} (2,1)$, i.e. Poincare series attached to a Stone-Von Neumann representation of the unipotent subgroup $N$ of $G$. Such Poincare series have in general exponential growth. In this study we use results on abelian and non-abelian Fourier term modules obtained in arXiv:1912.01334. We compute the inner product of truncations of these series and those associated to unitary characters of $N$ with square integrable automorphic forms, in connection with their Fourier expansions. As a consequence, we obtain general completeness results that, in particular, generalize those valid for the classical holomorphic (and antiholomorphic) Poincare series for $mathrm{SL}(2,mathbb{R})$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا