We present a database of 3137 solar flare ribbon events corresponding to every flare of GOES class C1.0 and greater within 45 degrees from the central meridian, from April 2010 until April 2016, observed by the emph{Solar Dynamics Observatory}. For every event in the database, we compare the GOES peak X-ray flux with corresponding active-region and flare-ribbon properties. We find that while the peak X-ray flux is not correlated with the active region unsigned magnetic flux, it is strongly correlated with the flare ribbon reconnection flux, flare ribbon area, and the fraction of active region flux that undergoes reconnection. We find the relationship between the peak X-ray flux and the flare ribbon reconnection flux to be $I_mathrm{X,peak} propto Phi_mathrm{ribbon}^{1.5}$. This scaling law is consistent with earlier hydrodynamic simulations of impulsively heated flare loops. Using the flare reconnection flux as a proxy for the total released flare energy $E$, we find that the occurrence frequency of flare energies follows a power-law dependence: $dN/dE propto E^{-1.6}$ for $10^{31}<E<10^{33}$ erg, consistent with earlier studies of solar and stellar flares. The database is available online and can be used for future quantitative studies of flares.