Do you want to publish a course? Click here

The role of coherence during classical and quantum decoherence

364   0   0.0 ( 0 )
 Added by Jinxing Hou
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The total correlations in a bipartite quantum system are measured by the quantum mutual information $mathcal{I}$, which consists of quantum discord and classical correlation. However, recent results in quantum information shows that coherence, which is a part of total correlation, is more general and more fundamental than discord. The role of coherence in quantum resource theories is worthwhile to investigate. We first study the relation between quantum discord and coherence by reducing the difference between them. And then, we consider the dynamics of quantum discord, classical correlations and quantum coherence under incoherent quantum channels. We discover that coherence indicate the behavior of quantum discord (classical correlation) for times $t<bar t$, and indicate the decoherence of classical correlation (quantum discord) for times $t>bar t$. What is more, the coherence frozen and decay indicate the quantum discord and classical correlation frozen and decay respectively.



rate research

Read More

A multi-slit interference experiment, with which-way detectors, in the presence of environment induced decoherence, is theoretically analyzed. The effect of environment is modeled via a coupling to a bath of harmonic oscillators. Through an exact analysis, an expression for $mathcal{C}$, a recently introduced measure of coherence, of the particle at the detecting screen is obtained as a function of the parameters of the environment. It is argued that the effect of decoherence can be quantified using the measured coherence value which lies between zero and one. For the specific case of two slits, it is shown that the decoherence time can be obtained from the measured value of the coherence, $mathcal{C}$, thus providing a novel way to quantify the effect of decoherence via direct measurement of quantum coherence. This would be of significant value in many current studies that seek to exploit quantum superpositions for quantum information applications and scalable quantum computation.
We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we introduce an operational protocol, to which we refer to as the end-point-measurement scheme, allowing to define the statistics of energy changes as a function of energy measurements performed only after its evolution. At the price of an additional uncertainty on the value of the initial energies, this approach prevents the loss of initial quantum coherences and enables the estimation of their effects on energy fluctuations. We illustrate our findings using a three-level quantum system in interaction with thermal reservoirs.
We discuss the role of quantum coherence in the energy fluctuations of open quantum systems. To this aim, we introduce a protocol, to which we refer to as the end-point-measurement scheme, allowing to define the statistics of energy changes as a function of energy measurements performed only after the evolution of the initial state. At the price of an additional uncertainty on the initial energies, this approach prevents the loss of initial quantum coherences and enables the estimation of their effects on energy fluctuations. We demonstrate our findings by running an experiment on the IBM Quantum Experience superconducting qubit platform.
We re-analyse the optomechanical interferometer experiment proposed by Marshall, Simon, Penrose and Bouwmeester with the help of a recently developed quantum-classical hybrid theory. This leads to an alternative evaluation of the mirror induced decoherence. Surprisingly, we find that it behaves essentially in the same way for suitable initial conditions and experimentally relevant parameters, no matter whether the mirror is considered a classical or quantum mechanical object. We discuss the parameter ranges where this result holds and possible implications for a test of spontaneous collapse models, for which this experiment has been designed.
The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Greens function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا