Jet energy loss in heavy ion collisions, as quantified by the traditional observable of high $p_T$ hadrons nuclear modification factor $R_{AA}$, provides highly informative imaging of the hot medium created in heavy ion collisions. There are now comprehensive sets of available data, from average suppression to azimuthal anisotropy, from light to heavy flavors, from RHIC 200GeV to LHC 2.76TeV as well as 5.02TeV collisions. A unified description of such comprehensive data presents a stringent vetting of any viable model for jet quenching phenomenology. In this contribution we report such a systematic and successful test of CUJET3, a jet energy loss simulation framework built upon a nonperturbative microscopic model for the hot medium as a semi-quark-gluon-monopole plasma (sQGMP) which integrates two essential elements of confinement, i.e. the Polyakov-loop suppression of quarks/gluons and emergent magnetic monopoles.