Do you want to publish a course? Click here

The physical origin of long gas depletion times in galaxies

65   0   0.0 ( 0 )
 Added by Vadim Semenov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model that explains why galaxies form stars on a time scale significantly longer than the time scales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short time scale and thus the rate of this evolution does not limit the star formation rate. Instead, the star formation rate is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of star-forming state multiple times, which results in a long time scale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated $L_*$-sized galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.



rate research

Read More

Stars do not form continuously distributed over star forming galaxies. They form in star clusters of different masses. This nature of clustered star formation is taken into account in the theory of the integrated galactic stellar initial mass function (IGIMF) in which the galaxy-wide IMF (the IGIMF) is calculated by adding all IMFs of young star clusters. For massive stars the IGIMF is steeper than the universal IMF in star clusters and steepens with decreasing SFR which is called the IGIMF-effect. The current SFR and the total Halpha luminosity of galaxies therefore scale non-linearly in the IGIMF theory compared to the classical case in which the galaxy-wide IMF is assumed to be constant and identical to the IMF in star clusters. We here apply for the first time the revised SFR-L_Halpha relation on a sample of local volume star forming galaxies with measured Halpha luminosities. The fundamental results are: i) the SFRs of galaxies scale linearly with the total galaxy neutral gas mass, ii) the gas depletion time scales of dwarf irregular and large disk galaxies are about 3 Gyr implying that dwarf galaxies do not have lower star formation efficiencies than large disk galaxies, and iii) the stellar mass buildup times of dwarf and large galaxies are only in agreement with downsizing in the IGIMF context, but contradict downsizing within the traditional framework that assumes a constant galaxy-wide IMF.
A recent determination of the relationships between the X-ray luminosity of the ISM (Lx) and the stellar and total mass, for a sample of nearby early-type galaxies (ETGs), is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z~2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different Lx values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed Lx; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.
Despite their ubiquity, there are many open questions regarding galactic and cosmic magnetic fields. Specifically, current observational constraints cannot rule out if magnetic fields observed in galaxies were generated in the Early Universe or are of astrophysical nature. Motivated by this we use our magnetic tracers algorithm to investigate whether the signatures of primordial magnetic fields persist in galaxies throughout cosmic time. We simulate a Milky Way-like galaxy in four scenarios: magnetised solely by primordial magnetic fields, magnetised exclusively by SN-injected magnetic fields, and two combined primordial + SN magnetisation cases. We find that once primordial magnetic fields with a comoving strength $B_0 >10^{-12}$ G are considered, they remain the primary source of galaxy magnetisation. Our magnetic tracers show that, even combined with galactic sources of magnetisation, when primordial magnetic fields are strong, they source the large-scale fields in the warm metal-poor phase of the simulated galaxy. In this case, the circumgalactic and intergalactic medium can be used to probe $B_0$ without risk of pollution by magnetic fields originated in the galaxy. Furthermore, whether magnetic fields are primordial or astrophysically-sourced can be inferred by studying local gas metallicity. As a result, we predict that future state-of-the-art observational facilities of magnetic fields in galaxies will have the potential to unravel astrophysical and primordial magnetic components of our Universe.
Tracing molecular hydrogen content with carbon monoxide in low-metallicity galaxies has been exceedingly difficult. Here we present a new effort, with IRAM 30-m observations of 12CO(1-0) of a sample of 8 dwarf galaxies having oxygen abundances ranging from 12+logO/H=7.7 to 8.4. CO emission is detected in all galaxies, including the most metal-poor galaxy of our sample (0.1 Zsun); to our knowledge this is the largest number of 12CO(1-0) detections ever reported for galaxies with 12+logO/H<=8 (0.2 Zsun) outside the Local Group. We calculate stellar masses (Mstar) and star-formation rates (SFRs), and analyze our results by combining our observations with galaxy samples from the literature. Extending previous results for a correlation of the molecular gas depletion time, tau(dep), with Mstar and specific SFR (sSFR), we find a variation in tau(dep) of a factor of 200 or more (from <50 Myr to 10 Gyr) over a spread of 1000 in sSFR and Mstar. We exploit the variation of tau(dep) to constrain the CO-to-H2 mass conversion factor alpha(CO) at low metallicity, and assuming a power-law variation find alpha(CO) propto (Z/Zsun)^1.9, similar to results based on dust continuum measurements compared with gas mass. By including HI measurements, we show that the fraction of total gas mass relative to the baryonic mass is higher in galaxies that are metal poor, of low mass, and of high sSFR. Finally, comparisons of the data with star-formation models of the molecular gas phases suggest that, at metallicities Z/Zsun<=0.2, there are some discrepancies with model predictions.
93 - Tomonori Totani 2011
We have studied the properties of more than 1600 low-redshift galaxies by utilizing high-quality infrared flux measurements of the AKARI All-Sky Survey and physical quantities based on optical and 21-cm observations. Our goal is to understand the physics determining the infrared spectral energy distribution (SED). The ratio of the total infrared luminosity L_TIR, to the star-formation rate (SFR) is tightly correlated by a power-law to specific SFR (SSFR), and L_TIR is a good SFR indicator only for galaxies with the largest SSFR. We discovered a tight linear correlation for normal galaxies between the radiation field strength of dust heating, estimated by infrared SED fits (U_h), and that of galactic-scale infrared emission (U_TIR ~ L_TIR/R^2), where R is the optical size of a galaxy. The dispersion of U_h along this relation is 0.3 dex, corresponding to 13% dispersion in the dust temperature. This scaling and the U_h/U_TIR ratio can be explained physically by a thin layer of heating sources embedded in a thicker, optically-thick dust screen. The data also indicate that the heated fraction of the total dust mass is anti-correlated to the dust column density, supporting this interpretation. In the large U_TIR limit, the data of circumnuclear starbursts indicate the existence of an upper limit on U_h, corresponding to the maximum SFR per gas mass of ~ 10 Gyr^{-1}. We find that the number of galaxies sharply drops when they become optically thin against dust-heating radiation, suggesting that a feedback process to galaxy formation (likely by the photoelectric heating) is working when dust-heating radiation is not self-shielded on a galactic scale. Implications are discussed for the M_HI-size relation, the Kennicutt-Schmidt relation, and galaxy formation in the cosmological context.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا