On the canonical map of some surfaces isogenous to a product


Abstract in English

We give new contributions to the existence problem of canonical surfaces of high degree. We construct several families (indeed, connected components of the moduli space) of surfaces $S$ of general type with $p_g=5,6$ whose canonical map has image $Sigma$ of very high degree, $d=48$ for $p_g=5$, $d=56$ for $p_g=6$. And a connected component of the moduli space consisting of surfaces $S$ with $K^2_S = 40, p_g=4, q=0$ whose canonical map has always degree $geq 2$, and, for the general surface, of degree $2$ onto a canonical surface $Y$ with $K^2_Y = 12, p_g=4, q=0$. The surfaces we consider are SIP s, i.e. surfaces $S$ isogenous to a product of curves $(C_1 times C_2 )/ G$; in our examples the group $G$ is elementary abelian, $G = (mathbb{Z}/m)^k$. We also establish some basic results concerning the canonical maps of any surface isogenous to a product, basing on elementary representation theory.

Download