The superconducting energy gap of $rm Ba_{1-x}K_xBiO_3$ has been measured by tunneling. Despite the fact that the sample was macroscopically single phase with very sharp superconducting transition $T_c$ at 32~$K$, some of the measured tunnel junctions made by point contacts between silver tip and single crystal of $rm Ba_{1-x}K_xBiO_3$ had lower transition at 20~$K$. Local variation of the potassium concentration as well as oxygen deficiency in $rm Ba_{1-x}K_xBiO_3$ at the place where the point contact is made can account for the change of $T_c$. The conductance curves of the tunnel junctions reveal the BCS behavior with a small broadening of the superconducting-gap structure. A value of the energy gap scales with $T_c$. The reduced gap amounts to $2Delta/kT_c = 4div 4.3$ indicating a medium coupling strength. Temperature dependence of the energy gap follows the BCS prediction.