Do you want to publish a course? Click here

Many edge-disjoint rainbow spanning trees in general graphs

122   0   0.0 ( 0 )
 Added by Lauren M. Nelsen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

A rainbow spanning tree in an edge-colored graph is a spanning tree in which each edge is a different color. Carraher, Hartke, and Horn showed that for $n$ and $C$ large enough, if $G$ is an edge-colored copy of $K_n$ in which each color class has size at most $n/2$, then $G$ has at least $lfloor n/(Clog n)rfloor$ edge-disjoint rainbow spanning trees. Here we strengthen this result by showing that if $G$ is any edge-colored graph with $n$ vertices in which each color appears on at most $deltacdotlambda_1/2$ edges, where $deltageq Clog n$ for $n$ and $C$ sufficiently large and $lambda_1$ is the second-smallest eigenvalue of the normalized Laplacian matrix of $G$, then $G$ contains at least $leftlfloorfrac{deltacdotlambda_1}{Clog n}rightrfloor$ edge-disjoint rainbow spanning trees.



rate research

Read More

An edge-colored graph $G$ is called textit{rainbow} if every edge of $G$ receives a different color. Given any host graph $G$, the textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees in $G$, denoted by $r(G,t)$, is defined as the maximum number of colors in an edge-coloring of $G$ containing no $t$ edge-disjoint rainbow spanning trees. For any vertex partition $P$, let $E(P,G)$ be the set of non-crossing edges in $G$ with respect to $P$. In this paper, we determine $r(G,t)$ for all host graphs $G$: $r(G,t)=|E(G)|$ if there exists a partition $P_0$ with $|E(G)|-|E(P_0,G)|<t(|P_0|-1)$; and $r(G,t)=max_{Pcolon |P|geq 3} {|E(P,G)|+t(|P|-2)}$ otherwise. As a corollary, we determine $r(K_{p,q},t)$ for all values of $p,q, t$, improving a result of Jia, Lu and Zhang.
A spanning tree of an edge-colored graph is rainbow provided that each of its edges receives a distinct color. In this paper we consider the natural extremal problem of maximizing and minimizing the number of rainbow spanning trees in a graph $G$. Such a question clearly needs restrictions on the colorings to be meaningful. For edge-colorings using $n-1$ colors and without rainbow cycles, known in the literature as JL-colorings, there turns out to be a particularly nice way of counting the rainbow spanning trees and we solve this problem completely for JL-colored complete graphs $K_n$ and complete bipartite graphs $K_{n,m}$. In both cases, we find tight upper and lower bounds; the lower bound for $K_n$, in particular, proves to have an unexpectedly chaotic and interesting behavior. We further investigate this question for JL-colorings of general graphs and prove several results including characterizing graphs which have JL-colorings achieving the lowest possible number of rainbow spanning trees. We establish other results for general $n-1$ colorings, including providing an analogue of Kirchoffs matrix tree theorem which yields a way of counting rainbow spanning trees in a general graph $G$.
We obtain sufficient conditions for the emergence of spanning and almost-spanning bounded-degree {sl rainbow} trees in various host graphs, having their edges coloured independently and uniformly at random, using a predetermined palette. Our first result asserts that a uniform colouring of $mathbb{G}(n,omega(1)/n)$, using a palette of size $n$, a.a.s. admits a rainbow copy of any given bounded-degree tree on at most $(1-varepsilon)n$ vertices, where $varepsilon > 0$ is arbitrarily small yet fixed. This serves as a rainbow variant of a classical result by Alon, Krivelevich, and Sudakov pertaining to the embedding of bounded-degree almost-spanning prescribed trees in $mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$. Given an $n$-vertex graph $G$ with minimum degree at least $delta n$, where $delta > 0$ is fixed, we use our aforementioned result in order to prove that a uniform colouring of the randomly perturbed graph $G cup mathbb{G}(n,omega(1)/n)$, using $(1+alpha)n$ colours, where $alpha > 0$ is arbitrarily small yet fixed, a.a.s. admits a rainbow copy of any given bounded-degree {sl spanning} tree. This can be viewed as a rainbow variant of a result by Krivelevich, Kwan, and Sudakov who proved that $G cup mathbb{G}(n,C/n)$, where $C > 0$ is independent of $n$, a.a.s. admits a copy of any given bounded-degree spanning tree. Finally, and with $G$ as above, we prove that a uniform colouring of $G cup mathbb{G}(n,omega(n^{-2}))$ using $n-1$ colours a.a.s. admits a rainbow spanning tree. Put another way, the trivial lower bound on the size of the palette required for supporting a rainbow spanning tree is also sufficient, essentially as soon as the random perturbation a.a.s. has edges.
A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. Our main result implies that, given any optimal colouring of a sufficiently large complete graph $K_{2n}$, there exists a decomposition of $K_{2n}$ into isomorphic rainbow spanning trees. This settles conjectures of Brualdi--Hollingsworth (from 1996) and Constantine (from 2002) for large graphs.
In 2001, Komlos, Sarkozy and Szemeredi proved that, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex graph with minimum degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex tree with maximum degree at most $cn/log n$. We prove the corresponding result for directed graphs. That is, for each $alpha>0$, there is some $c>0$ and $n_0$ such that, if $ngeq n_0$, then every $n$-vertex directed graph with minimum semi-degree at least $(1/2+alpha)n$ contains a copy of every $n$-vertex oriented tree whose underlying maximum degree is at most $cn/log n$. As with Komlos, Sarkozy and Szemeredis theorem, this is tight up to the value of $c$. Our result improves a recent result of Mycroft and Naia, which requires the oriented trees to have underlying maximum degree at most $Delta$, for any constant $Delta$ and sufficiently large $n$. In contrast to the previous work on spanning trees in dense directed or undirected graphs, our methods do not use Szemeredis regularity lemma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا