No Arabic abstract
Recently a paper of Klimovskikh et al. was published presenting experimental and theoretical analysis of the graphene/Pb/Pt(111) system. The authors investigate the crystallographic and electronic structure of this graphene-based system by means of LEED, ARPES, and spin-resolved PES of the graphene $pi$ states in the vicinity of the Dirac point of graphene. The authors of this paper demonstrate that an energy gap of approx. 200 meV is opened in the spectral function of graphene directly at the Dirac point of graphene and spin-splitting of 100 meV is detected for the upper part of the Dirac cone. On the basis of the spin-resolved photoelectron spectroscopy measurements of the region around the gap the authors claim that these splittings are of a spin-orbit nature and that the observed spin structure confirms the observation of the quantum spin Hall state in graphene, proposed in earlier theoretical works. Here we will show that careful systematic analysis of the experimental data presented in this manuscript is needed and their interpretation require more critical consideration for making such conclusions. Our analysis demonstrates that the proposed effects and interpretations are questionable and require further more careful experiments.
Spin-orbit coupling (SOC) in graphene can be greatly enhanced by proximity coupling it to transition metal dichalcogenides (TMDs) such as WSe2. We find that the strength of the acquired SOC in graphene depends on the stacking order of the heterostructures when using hexagonal boron nitride (h-BN) as the capping layer, i.e., SiO2/graphene/WSe2/h-BN exhibiting stronger SOC than SiO2/WSe2/graphene/h-BN. We utilize photoluminescence (PL) as an indicator to characterize the interaction between graphene and monolayer WSe2 grown by chemical vapor deposition. We observe much stronger PL quenching in the SiO2/graphene/WSe2/h-BN stack than in the SiO2/WSe2/graphene/h-BN stack, and correspondingly a much larger weak antilocalization (WAL) effect or stronger induced SOC in the former than in the latter. We attribute these two effects to the interlayer distance between graphene and WSe2, which depends on whether graphene is in immediate contact with h-BN. Our observations and hypothesis are further supported by first-principles calculations which reveal a clear difference in the interlayer distance between graphene and WSe2 in these two stacks.
Spin-orbit coupling (SOC) is essential in understanding the properties of 5d transition metal compounds, whose SOC value is large and almost comparable to other key parameters. Over the past few years, there have been numerous studies on the SOC-driven effects of the electronic bands, magnetism, and spin-orbit entanglement for those materials with a large SOC. However, it is less studied and remains an unsolved problem in how the SOC affects the lattice dynamics. We, therefore, measured the phonon spectra of 5d pyrochlore Cd2Os2O7 over the full Brillouin zone to address the question by using inelastic x-ray scattering (IXS). Our main finding is a visible mode-dependence in the phonon spectra, measured across the metal-insulator transition at 227 K. We examined the SOC strength dependence of the lattice dynamics and its spin-phonon (SP) coupling, with first-principle calculations. Our experimental data taken at 100 K are in good agreement with the theoretical results obtained with the optimized U = 2.0 eV with SOC. By scaling the SOC strength and the U value in the DFT calculations, we demonstrate that SOC is more relevant than U to explaining the observed mode-dependent phonon energy shifts with temperature. Furthermore, the temperature dependence of the phonon energy can be effectively described by scaling SOC. Our work provides clear evidence of SOC producing a non-negligible and essential effect on the lattice dynamics of Cd2Os2O7 and its SP coupling.
The comment by O. Entin-Wohlman, A. Aharony, and Y. Utsumi, on our paper S. Varela, I. Zambrano, B. Berche, V. Mujica, and E. Medina, Phys. Rev. B 101, 241410(R) (2020) makes a few points related to the validity of our model, especially in the light of the interpretation of Bardarsons theorem: in the presence of time reversal symmetry and for half-integral spin the transmission eigenvalues of the two terminal scattering matrix come in (Kramers) degenerate pairs. The authors of the comment first propose an ansatz for the wave function in the spin active region and go on to show that the resulting transmission does not show spin dependence, reasoning that spin dependence would violate Bardarsons assertion. Here we clearly show that the ansatz presented assumes spin-momentum independence from the outset and thus just addresses the spinless particle problem. We then find the appropriate eigenfunction contemplating spin-momentum coupling and show that the resulting spectrum obeys Bardarsons theorem. Finally we show that the allowed wavevectors are the ones assumed in the original paper and thus the original conclusions follow. We recognize that the Hamiltonian in our paper written in local coordinates on a helix was deceptively simple and offer the expressions of how it should be written to more overtly convey the physics involved. The relation between spin polarization and torque becomes clear, as described in our paper. This response is a very important clarification in relation to the implications of Bardarsons theorem concerning the possibility of spin polarization in one dimensional systems in the linear regime.
Understanding the nature of the interaction at the graphene/metal interfaces is the basis for graphene-based electron- and spin-transport devices. Here we investigate the hybridization between graphene- and metal-derived electronic states by studying the changes induced through intercalation of a pseudomorphic monolayer of Cu in between graphene and Ir(111), using scanning tunnelling microscopy and photoelectron spectroscopy in combination with density functional theory calculations. We observe the modifications in the band structure by the intercalation process and its concomitant changes in the charge distribution at the interface. Through a state-selective analysis of band hybridization, we are able to determine their contributions to the valence band of graphene giving rise to the gap opening. Our methodology reveals the mechanisms that are responsible for the modification of the electronic structure of graphene at the Dirac point, and permits to predict the electronic structure of other graphene-metal interfaces.
Many of the exotic properties proposed to occur in graphene rely on the possibility of increasing the spin orbit coupling (SOC). By combining analytical and numerical tight binding calculations, in this work we study the SOC induced by heavy adatoms with active electrons living in $p$ orbitals. Depending on the position of the adatoms on graphene different kinds of SOC appear. Adatoms located in hollow position induce spin conserving intrinsic like SOC whereas a random distribution of adatoms induces a spin flipping Rashba like SOC. The induced SOC is linearly proportional to the adatoms concentration, indicating the inexistent interference effects between different adatoms. By computing the Hall conductivity we have proved the stability of the topological quantum Hall phases created by the adatoms against inhomogeneous spin orbit coupling . For the case of Pb adatoms, we find that a concentration of 0.1 adatom per carbon atom generates SOCs of the order of $sim$40$meV$.