Do you want to publish a course? Click here

The fading of Cassiopeia A, and improved models for the absolute spectrum of primary radio calibration sources

55   0   0.0 ( 0 )
 Added by Daniel Reichart
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on five years of observations with the 40-foot telescope at Green Bank Observatory (GBO), Reichart & Stephens (2000) found that the radio source Cassiopeia A had either faded more slowly between the mid-1970s and late 1990s than Baars et al. (1977) had found it to be fading between the late 1940s and mid-1970s, or that it had rebrightened and then resumed fading sometime between the mid-1970s and mid-1990s, in L band (1.4 GHz). Here, we present 15 additional years of observations of Cas A and Cyg A with the 40-foot in L band, and three and a half additional years of observations of Cas A, Cyg A, Tau A, and Vir A with GBOs recently refurbished 20-meter telescope in L and X (9 GHz) bands. We also present a more sophisticated analysis of the 40-foot data, and a reanalysis of the Baars et al. (1977) data, which reveals small, but non-negligible differences. We find that overall, between the late 1950s and late 2010s, Cas A faded at an average rate of $0.670 pm 0.019$ %/yr in L band, consistent with Reichart & Stephens (2000). However, we also find, at the 6.3$sigma$ credible level, that it did not fade at a constant rate. Rather, Cas A faded at a faster rate through at least the late 1960s, rebrightened (or at least faded at a much slower rate), and then resumed fading at a similarly fast rate by, at most, the late 1990s. Given these differences from the original Baars et al. (1977) analysis, and given the importance of their fitted spectral and temporal models for flux-density calibration in radio astronomy, we update and improve on these models for all four of these radio sources. In doing so, we additionally find that Tau A is fading at a rate of $0.102^{+0.042}_{-0.043}$ %/yr in L band.



rate research

Read More

LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of $2.6 pm 0.2$, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations published in Astroparticle Physics 50-52 (2013) 76-91: With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.
153 - S. Riggi , G. Umana , C. Trigilio 2021
We present observations of a region of the Galactic plane taken during the Early Science Program of the Australian Square Kilometre Array Pathfinder (ASKAP). In this context, we observed the SCORPIO field at 912 MHz with an uncompleted array consisting of 15 commissioned antennas. The resulting map covers a square region of ~40 deg^2, centred on (l, b)=(343.5{deg}, 0.75{deg}), with a synthesized beam of 24x21 and a background rms noise of 150-200 {mu}Jy/beam, increasing to 500-600 {mu}Jy/beam close to the Galactic plane. A total of 3963 radio sources were detected and characterized in the field using the CAESAR source finder. We obtained differential source counts in agreement with previously published data after correction for source extraction and characterization uncertainties, estimated from simulated data. The ASKAP positional and flux density scale accuracy were also investigated through comparison with previous surveys (MGPS, NVSS) and additional observations of the SCORPIO field, carried out with ATCA at 2.1 GHz and 10 spatial resolution. These allowed us to obtain a measurement of the spectral index for a subset of the catalogued sources and an estimated fraction of (at least) 8% of resolved sources in the reported catalogue. We cross-matched our catalogued sources with different astronomical databases to search for possible counterparts, finding ~150 associations to known Galactic objects. Finally, we explored a multiparametric approach for classifying previously unreported Galactic sources based on their radio-infrared colors.
Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in flys eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e. Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the $37$,sky$^{-1}$,day$^{-1}$ calculated using nominal exposures and sensitivities for this same sample by citet{craft_nature}. At the Euclidean power-law index of $-1.5$, the rate is $10.7_{-1.8}^{+2.7},{rm (sys)} , pm , 3,{rm (stat)}$,sky$^{-1}$,day$^{-1}$ above a threshold of $57pm6,{rm (sys)}$,Jy,ms, while for the best-fit index for this sample of $-2.1$, it is $16.6_{-1.5}^{+1.9} ,{rm (sys)}, pm 4.7,{rm (stat)}$,sky$^{-1}$,day$^{-1}$ above a threshold of $41.6pm1.5,{rm (sys)}$,Jy,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them.
We have reprocessed a set of observations of 75 bright, unidentified, steep-spectrum polarized radio sources taken with the Green Bank 43-m telescope to find previously undetected sub-millisecond pulsars and radio bursts. The (null) results of the first search of these data were reported by Schmidt et al. Our reprocessing searched for single pulses out to a dispersion measure (DM) of 1000 pc cm$^{-3}$ which were classified using the Deep Learning based classifier FETCH. We also searched for periodicities at a wider range of DMs and accelerations. Our search was sensitive to highly accelerated, rapidly rotating pulsars (including sub-millisecond pulsars) in compact binary systems as well as to highly-dispersed impulsive signals, such as fast radio bursts. No pulsars or astrophysical burst signals were found in the reprocessing.
The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (<100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15 arcsec with a high dynamic range and good image fidelity. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna (LBA) system. We reduced the datasets and obtained an image for each A-team source. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا