Do you want to publish a course? Click here

Dynamics of the lattice and spins in the phase-separated manganite (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_3$

87   0   0.0 ( 0 )
 Added by Haruka Taniguchi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated slow relaxations of the magnetostriction and residual magnetostriction of the phase-separated system (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_3$, in which the metamagnetic transition from a paramagnetic insulating state to a ferromagnetic metallic state is accompanied by a lattice shrinkage. The relaxations are well fitted by a stretched exponential function, suggesting the strong frustraction between the double exchange interaction and Jahn-Teller effect. We have revealed that the Gd substitution suppresses the frozen phase-separated phase at low temperatures and stabilizes the paramagnetic insulating state in the dynamic phase-separated phase at intermediate temperatures. The former origin would be the randomness effect and the latter would be the suppression of the double exchange interaction.



rate research

Read More

We have demonstrated the effect of pressure on the steplike metamagnetic transition and its associated magnetostriction in (Eu$_{1-x}$Gd$_{x}$)$_{0.6}$Sr$_{0.4}$MnO$_{3}$ ($x=0$ and 0.1). The critical field initiating the field induced ferromagnetic transition in both samples is lowered by the applied pressure. The further application of external pressure up to 1.2 GPa on the $x=0$ parent sample causes a spontaneous ferromagnetic transition with a second-oder like character, leading to collapses of the steplike transition and its concomitant lattice striction. These findings indicate a crucial role of the low-temperature phase separated state characterized by a suppressed magnetization upon decreasing temperature.
In order to reveal many-body interactions in the three-dimensional (3D) perovskite manganite, we have performed an $in$ $situ$ angle-resolved photoemission spectroscopy (ARPES) on La$_{0.6}$Sr$_{0.4}$MnO$_3$ (LSMO) and investigated the behaviors of quasiparticles. We observe quasiparticle peaks around the Fermi momentum, both in the electron and the hole bands, and clear kinks throughout the hole Fermi surface in the ARPES band dispersion. The isotropic behavior sharply contrasts to the strong anisotropic quasiparticle excitation observed in layered manganites. These results suggest that polaronic quasiparticles by coupling of the electrons with Jahn-Teller phonons play an important role in the physical properties of the ferromagnetic metallic phase in 3D manganite LSMO.
We have performed the powder neutron diffraction measurements on the solid solutions of SrRu_{1-x}Mn_xO_3, and found that the itinerant ferromagnetic order observed in pure SrRuO_3 changes into the C-type antiferromagnetic (AF) order with nearly localized d electrons in the intermediate Mn concentration between x=0.4 and 0.6. With increasing x, the AF moment is strongly enhanced from 1.1 mB (x=0.4) to 2.6 mB (x=0.6), which is accompanied by the elongation of the tetragonal c/a ratio. These results suggest that the substitution of Mn for Ru suppresses the itinerant character of the d electrons, and induces the superexchange interaction through the compression in the c plane. We have also found that the magnetic and transport properties observed in our tetragonal samples are quite similar to those of recently reported orthorhombic ones.
311 - M. Kh. Hamad , Y. Maswadeh , 2019
We investigate the effect of Ni${text -}$substitution on the crystalline structure and the critical behavior of $Nd_{0.6}Sr_{0.4}Mn_{1-x}Ni_{x}O_{3}$ (0.00 $leq$ x $leq$ 0.20) perovskite. X${text -}$ray diffraction patterns revealed that the major phase in all samples is the orthorhombic structure with space group $textit{Pnma}$. Rietveld refinement revealed a linear reduction in the lattice parameters along with monotonic reduction in the O2${text -}$Mn${text -}$O2 angel with increasing Ni concentration. The modified Arrott plots and the Kouvel${text -}$Fisher method have been used to analyze the magnetization isotherms near the paramagnetic to ferromagnetic (PM${text -}$FM) phase transition. The obtained critical exponents ($beta$, $gamma$ and $delta$) revealed that the Ni${text -}$free sample is consistent with 3D${text -}$Heisenberg like behavior. However, upon Ni${text -}$substitution, the critical exponents exhibit a mean field like behavior. The reliability of the obtained critical exponent ($beta$, $gamma$ and $delta$) values have been confirmed by the universal scaling behavior of the isothermal magnetization near the transition temperature.
Perovskite manganite thin films, $Pr_{0.55}(Ca_{1-y}Sr_y)_{0.45}MnO_3$, have been studied using x-ray photoemission spectroscopy in order to clarify the consequence of the competition between ferromagnetic metal (FM) and charge-orbital ordered insulator (COOI). Films with $y$ = 0.40 undergo uniform paramagnetic insulator to FM transition. On the other hand, in films with $y$ = 0.25, the composition near the bicritical point, phase separation of COOI and FM domains is indicated by the spectral change below 125 K. Interestingly, between 50 K and 70 K, the visible laser illumination transfers the COOI-like spectra obtained in cooling process to the FM-like spectra obtained in warming process. This indicates that the photoinduced IMT is governed by the increase of the FM volume fraction and is deeply related to the phase separation between the FM and COOI states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا