In this work, we study the crystalline nuclei growth in glassy systems focusing primarily on the early stages of the process, at which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simulation results for two crystallizing glassy systems, we evaluate the growth laws of the crystalline nuclei and the parameters of the growth kinetics at the temperatures corresponding to deep supercoolings; herein, the statistical treatment of the simulation results is done within the mean-first-passage-time method. It is found for the considered systems at different temperatures that the crystal growth laws rescaled onto the waiting times of the critically-sized nucleus follow the unified dependence, that can simplify significantly theoretical description of the post-nucleation growth of crystalline nuclei. The evaluated size-dependent growth rates are characterized by transition to the steady-state growth regime, which depends on the temperature and occurs in the glassy systems when the size of a growing nucleus becomes two-three times larger than a critical size. It is suggested to consider the temperature dependencies of the crystal growth rate characteristics by using the reduced temperature scale $widetilde{T}$. Thus, it is revealed that the scaled values of the crystal growth rate characteristics (namely, the steady-state growth rate and the attachment rate for the critically-sized nucleus) as functions of the reduced temperature $widetilde{T}$ for glassy systems follow the unified power-law dependencies. This finding is supported by available simulation results; the correspondence with the experimental data for the crystal growth rate in glassy systems at the temperatures near the glass transition is also discussed.