No Arabic abstract
Hyperpolarisation at room temperature is one of the most important research fields in order to improve liquid, gas or nanoparticle tracer for Magnetic Resonance Imaging (MRI) in medical applications. In this paper we utilize nuclear magnetic resonance (NMR) to investigate the hyperpolarisation effect of negatively charged nitrogen vacancy (NV) centres on carbon-13 nuclei and their spin diffusion in a diamond single crystal close to the excited state level anti crossing (ESLAC) around 50 mT. Whereas the electron spins of the NV centre can be easily polarized in its m = 0 ground state at room temperature just by irradiation with green light , the swop of the NV electron spin polarization to a carbon-13 nuclei is a complex task. We found that the coupling between the polarized NV electron spin, the electron spin of a substitutional nitrogen impurity (P1) as well as its nitrogen-14 nuclei and the carbon-13 nuclear spin has to be considered. Here we show that through an optimization of this procedure, in about two minutes a signal to noise ratio which corresponds to a 23 hour standard measurement without hyperpolarisation and an accumulation of 460 single scans can be obtained. Furthermore we were able to identify several polarisation peaks of different sign at different magnetic fields in a region of some tens of gauss. Most of the peaks can be attributed to a coupling of the NV centres to nearby P1 centres. We present a new theoretical model in a framework of cross polarisation of a four spin dynamic model in good agreement with our experimental data. The results demonstrate the opportunities and power as well as limitations of hyperpolarisation in diamond via NV centres. We expect that the current work may have a significant impact on future applications.
We demonstrate electrical detection of the $^{14}$N nuclear spin coherence of NV centers at room temperature. Nuclear spins are candidates for quantum memories in quantum-information devices and quantum sensors, and hence the electrical detection of nuclear spin coherence is essential to develop and integrate such quantum devices. In the present study, we used a pulsed electrically detected electron-nuclear double resonance technique to measure the Rabi oscillations and coherence time ($T_2$) of $^{14}$N nuclear spins in NV centers at room temperature. We observed $T_2 approx$ 0.9 ms at room temperature. Our results will pave the way for the development of novel electron- and nuclear-spin-based diamond quantum devices.
The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy center spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy center. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground state spin. The nitrogen-vacancy center is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 10^(-6) strain Hz^(-1/2). Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are obtained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
We report on acoustically driven spin resonances in atomic-scale centers in silicon carbide at room temperature. Specifically, we use a surface acoustic wave cavity to selectively address spin transitions with magnetic quantum number differences of $pm$1 and $pm$2 in the absence of external microwave electromagnetic fields. These spin-acoustic resonances reveal a non-trivial dependence on the static magnetic field orientation, which is attributed to the intrinsic symmetry of the acoustic fields combined with the peculiar properties of a half-integer spin system. We develop a microscopic model of the spin-acoustic interaction, which describes our experimental data without fitting parameters. Furthermore, we predict that traveling surface waves lead to a chiral spin-acoustic resonance, which changes upon magnetic field inversion. These results establish silicon carbide as a highly-promising hybrid platform for on-chip spin-optomechanical quantum control enabling engineered interactions at room temperature.
In this work we investigated the time behavior of the polarization of bulk 13C nuclei in diamond above the thermal equilibrium. This nonthermal nuclear hyperpolarization is achieved by cross relaxation between two nitrogen related paramagnetic defect species in diamond in combination with optical pumping. The decay of the hyperpolarization at four different magnetic fields is measured. Furthermore, we use the comparison with conventional nuclear resonance measurements to identify the involved distances of the nuclear spin with respect to the defects and therefore the coupling strengths. Also, a careful look at the linewidth of the signal give valuable information to piece together the puzzle of the hyperpolarization mechanism.