No Arabic abstract
When a recurrent neural network language model is used for caption generation, the image information can be fed to the neural network either by directly incorporating it in the RNN -- conditioning the language model by `injecting image features -- or in a layer following the RNN -- conditioning the language model by `merging image features. While both options are attested in the literature, there is as yet no systematic comparison between the two. In this paper we empirically show that it is not especially detrimental to performance whether one architecture is used or another. The merge architecture does have practical advantages, as conditioning by merging allows the RNNs hidden state vector to shrink in size by up to four times. Our results suggest that the visual and linguistic modalities for caption generation need not be jointly encoded by the RNN as that yields large, memory-intensive models with few tangible advantages in performance; rather, the multimodal integration should be delayed to a subsequent stage.
Human ratings are currently the most accurate way to assess the quality of an image captioning model, yet most often the only used outcome of an expensive human rating evaluation is a few overall statistics over the evaluation dataset. In this paper, we show that the signal from instance-level human caption ratings can be leveraged to improve captioning models, even when the amount of caption ratings is several orders of magnitude less than the caption training data. We employ a policy gradient method to maximize the human ratings as rewards in an off-policy reinforcement learning setting, where policy gradients are estimated by samples from a distribution that focuses on the captions in a caption ratings dataset. Our empirical evidence indicates that the proposed method learns to generalize the human raters judgments to a previously unseen set of images, as judged by a different set of human judges, and additionally on a different, multi-dimensional side-by-side human evaluation procedure.
In neural image captioning systems, a recurrent neural network (RNN) is typically viewed as the primary `generation component. This view suggests that the image features should be `injected into the RNN. This is in fact the dominant view in the literature. Alternatively, the RNN can instead be viewed as only encoding the previously generated words. This view suggests that the RNN should only be used to encode linguistic features and that only the final representation should be `merged with the image features at a later stage. This paper compares these two architectures. We find that, in general, late merging outperforms injection, suggesting that RNNs are better viewed as encoders, rather than generators.
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We first develop QACE-Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE-Img, which asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE-Img. Unfortunately, the standard VQA models are framed as a classification among only a few thousand categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE-Img is multi-modal, reference-less, and explainable. Our experiments show that QACE-Img compares favorably w.r.t. other reference-less metrics. We will release the pre-trained models to compute QACE.
Image captioning has demonstrated models that are capable of generating plausible text given input images or videos. Further, recent work in image generation has shown significant improvements in image quality when text is used as a prior. Our work ties these concepts together by creating an architecture that can enable bidirectional generation of images and text. We call this network Multi-Modal Vector Representation (MMVR). Along with MMVR, we propose two improvements to the text conditioned image generation. Firstly, a n-gram metric based cost function is introduced that generalizes the caption with respect to the image. Secondly, multiple semantically similar sentences are shown to help in generating better images. Qualitative and quantitative evaluations demonstrate that MMVR improves upon existing text conditioned image generation results by over 20%, while integrating visual and text modalities.
Most existing image retrieval systems use text queries as a way for the user to express what they are looking for. However, fine-grained image retrieval often requires the ability to also express where in the image the content they are looking for is. The text modality can only cumbersomely express such localization preferences, whereas pointing is a more natural fit. In this paper, we propose an image retrieval setup with a new form of multimodal queries, where the user simultaneously uses both spoken natural language (the what) and mouse traces over an empty canvas (the where) to express the characteristics of the desired target image. We then describe simple modifications to an existing image retrieval model, enabling it to operate in this setup. Qualitative and quantitative experiments show that our model effectively takes this spatial guidance into account, and provides significantly more accurate retrieval results compared to text-only equivalent systems.