No Arabic abstract
A number of statistical estimation problems can be addressed by semidefinite programs (SDP). While SDPs are solvable in polynomial time using interior point methods, in practice generic SDP solvers do not scale well to high-dimensional problems. In order to cope with this problem, Burer and Monteiro proposed a non-convex rank-constrained formulation, which has good performance in practice but is still poorly understood theoretically. In this paper we study the rank-constrained version of SDPs arising in MaxCut and in synchronization problems. We establish a Grothendieck-type inequality that proves that all the local maxima and dangerous saddle points are within a small multiplicative gap from the global maximum. We use this structural information to prove that SDPs can be solved within a known accuracy, by applying the Riemannian trust-region method to this non-convex problem, while constraining the rank to be of order one. For the MaxCut problem, our inequality implies that any local maximizer of the rank-constrained SDP provides a $ (1 - 1/(k-1)) times 0.878$ approximation of the MaxCut, when the rank is fixed to $k$. We then apply our results to data matrices generated according to the Gaussian ${mathbb Z}_2$ synchronization problem, and the two-groups stochastic block model with large bounded degree. We prove that the error achieved by local maximizers undergoes a phase transition at the same threshold as for information-theoretically optimal methods.
This paper introduces a new interior point method algorithm that solves semidefinite programming (SDP) with variable size $n times n$ and $m$ constraints in the (current) matrix multiplication time $m^{omega}$ when $m geq Omega(n^2)$. Our algorithm is optimal because even finding a feasible matrix that satisfies all the constraints requires solving an linear system in $m^{omega}$ time. Our work improves the state-of-the-art SDP solver [Jiang, Kathuria, Lee, Padmanabhan and Song, FOCS 2020], and it is the first result that SDP can be solved in the optimal running time. Our algorithm is based on two novel techniques: $bullet$ Maintaining the inverse of a Kronecker product using lazy updates. $bullet$ A general amortization scheme for positive semidefinite matrices.
The subgradient extragradient method for solving the variational inequality (VI) problem, which is introduced by Censor et al. cite{CGR}, replaces the second projection onto the feasible set of the VI, in the extragradient method, with a subgradient projection onto some constructible half-space. Since the method has been introduced, many authors proposed extensions and modifications with applications to various problems. In this paper, we introduce a modified subgradient extragradient method by improving the stepsize of its second step. Convergence of the proposed method is proved under standard and mild conditions and primary numerical experiments illustrate the performance and advantage of this new subgradient extragradient variant.
We propose a simple iterative (SI) algorithm for the maxcut problem through fully using an equivalent continuous formulation. It does not need rounding at all and has advantages that all subproblems have explicit analytic solutions, the cut values are monotonically updated and the iteration points converge to a local optima in finite steps via an appropriate subgradient selection. Numerical experiments on G-set demonstrate the performance. In particular, the ratios between the best cut values achieved by SI and the best known ones are at least $0.986$ and can be further improved to at least $0.997$ by a preliminary attempt to break out of local optima.
We propose finitely convergent methods for solving convex feasibility problems defined over a possibly infinite pool of constraints. Following other works in this area, we assume that the interior of the solution set is nonempty and that certain overrelaxation parameters form a divergent series. We combine our methods with a very general class of deterministic control sequences where, roughly speaking, we require that sooner or later we encounter a violated constraint if one exists. This requirement is satisfied, in particular, by the cyclic, repetitive and remotest set controls. Moreover, it is almost surely satisfied for random controls.
Motivated by recent work of Renegar, we present new computational methods and associated computational guarantees for solving convex optimization problems using first-order methods. Our problem of interest is the general convex optimization problem $f^* = min_{x in Q} f(x)$, where we presume knowledge of a strict lower bound $f_{mathrm{slb}} < f^*$. [Indeed, $f_{mathrm{slb}}$ is naturally known when optimizing many loss functions in statistics and machine learning (least-squares, logistic loss, exponential loss, total variation loss, etc.) as well as in Renegars transformed version of the standard conic optimization problem; in all these cases one has $f_{mathrm{slb}} = 0 < f^*$.] We introduce a new functional measure called the growth constant $G$ for $f(cdot)$, that measures how quickly the level sets of $f(cdot)$ grow relative to the function value, and that plays a fundamental role in the complexity analysis. When $f(cdot)$ is non-smooth, we present new computational guarantees for the Subgradient Descent Method and for smoothing methods, that can improve existing computational guarantees in several ways, most notably when the initial iterate $x^0$ is far from the optimal solution set. When $f(cdot)$ is smooth, we present a scheme for periodically restarting the Accelerated Gradient Method that can also improve existing computational guarantees when $x^0$ is far from the optimal solution set, and in the presence of added structure we present a scheme using parametrically increased smoothing that further improves the associated computational guarantees.