No Arabic abstract
We demonstrate a spin-based, all-dielectric electrometer based on an ensemble of nitrogen-vacancy (NV$^-$) defects in diamond. An applied electric field causes energy level shifts symmetrically away from the NV$^-$s degenerate triplet states via the Stark effect; this symmetry provides immunity to temperature fluctuations allowing for shot-noise-limited detection. Using an ensemble of NV$^-$s, we demonstrate shot-noise limited sensitivities approaching 1 V/cm/$sqrt{text{Hz}}$ under ambient conditions, at low frequencies ($<$10 Hz), and over a large dynamic range (20 dB). A theoretical model for the ensemble of NV$^-$s fits well with measurements of the ground-state electric susceptibility parameter, $langle k_perprangle$. Implications of spin-based, dielectric sensors for micron-scale electric-field sensing are discussed.
The nitrogen-vacancy (NV) color center in diamond is an atom-like system in the solid-state which specific spin properties can be efficiently used as a sensitive magnetic sensor. An external magnetic field induces Zeeman shifts of the NV center levels which can be measured using Optically Detected Magnetic Resonance (ODMR). In this work, we exploit the ODMR signal of an ensemble of NV centers in order to quantitatively map the vectorial structure of a magnetic field produced by a sample close to the surface of a CVD diamond hosting a thin layer of NV centers. The reconstruction of the magnetic field is based on a maximum-likelihood technique which exploits the response of the four intrinsic orientations of the NV center inside the diamond lattice. The sensitivity associated to a 1 {mu}m^2 area of the doped layer, equivalent to a sensor consisting of approximately 10^4 NV centers, is of the order of 2 {mu}T/sqrt{Hz}. The spatial resolution of the imaging device is 400 nm, limited by the numerical aperture of the optical microscope which is used to collect the photoluminescence of the NV layer. The versatility of the sensor is illustrated by the accurate reconstruction of the magnetic field created by a DC current inside a copper wire deposited on the diamond sample.
Hybrid quantum devices, in which disparate quantum elements are combined in order to achieve enhanced functionality, have received much attention in recent years due to their exciting potential to address key problems in quantum information processing, communication, and control. Specifically, significant progress has been made in the field of hybrid mechanical devices, in which a qubit is coupled to a mechanical oscillator. Strong coupling in such devices has been demonstrated with superconducting qubits, and coupling defect qubits to mechanical elements via crystal strain has enabled novel methods of qubit measurement and control. In this paper we demonstrate the fabrication of diamond optomechanical crystals with embedded nitrogen-vacancy (NV) centers, a preliminary step toward reaching the quantum regime with defect qubit hybrid mechanical devices. We measure optical and mechanical resonances of diamond optomechanical crystals as well as the spin coherence of single embedded NV centers. We find that the spin has long coherence times $T_2^* = 1.5 mu s$ and $T_2 = 72 mu s$ despite its proximity to nanofabricated surfaces. Finally, we discuss potential improvements of these devices and prospects for future experiments in the quantum regime.
We present systematic measurements of longitudinal relaxation rates ($1/T_1$) of spin polarization in the ground state of the nitrogen-vacancy (NV$^-$) color center in synthetic diamond as a function of NV$^-$ concentration and magnetic field $B$. NV$^-$ centers were created by irradiating a Type 1b single-crystal diamond along the [100] axis with 200 keV electrons from a transmission electron microscope with varying doses to achieve spots of different NV$^-$ center concentrations. Values of ($1/T_1$) were measured for each spot as a function of $B$.
Fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy (NV$^-$) centers are promising for a wide range of applications, such as for sensing, as fluorescence biomarkers, or to hyperpolarize nuclear spins. NV$^-$ centers are formed from substitutional nitrogen (P1 centers) defects and vacancies in the diamond lattice. Maximizing the concentration of NVs is most beneficial, which justifies the search for methods with a high yield of conversion from P1 to NV$^-$. We report here the characterization of surface cleaned fluorescent micro- and nanodiamonds, obtained by irradiation of commercial diamond powder with high-energy (10 MeV) electrons and simultaneous annealing at 800{deg}C. Using this technique and increasing the irradiation dose, we demonstrate the creation of NV$^-$ with up to 25 % conversion yield. Finally, we monitor the creation of irradiation-induced spin-1 defects in microdiamond particles, which we associate with W16 and W33 centers, and investigate the effects of irradiation dose and particle size on the coherence time of NV$^-$.
We report the design and fabrication of diamond spin-mechanical resonators embedded in a two-dimensional (2D) phononic crystal square lattice. The rectangular resonator features GHz in-plane compression modes protected by the phononic band gap of the square lattice. A membrane-in-bulk approach is developed for the fabrication of the suspended 2D structure. This approach overcomes the limitations of the existing approaches, which are either incompatible with the necessary high-temperature thermal annealing or unsuitable for 2D structures with the required feature size. Graded soft oxygen etching, with the etching rate decreased gradually to below 1 nm/minute, is used to remove defective surface layers damaged by reactive ion etching. Combining the graded etching with other established surface treatment techniques reduces the optical linewidth of nitrogen vacancy centers in resonators with a thickness below 1 micron to as narrow as 330 MHz.