Do you want to publish a course? Click here

Tuning anti-Klein to Klein tunneling in bilayer graphene

378   0   0.0 ( 0 )
 Added by Renjun Du
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that in gapped bilayer graphene, quasiparticle tunneling and the corresponding Berry phase can be controlled such that it exhibits features of single layer graphene such as Klein tunneling. The Berry phase is detected by a high-quality Fabry-P{e}rot interferometer based on bilayer graphene. By raising the Fermi energy of the charge carriers, we find that the Berry phase can be continuously tuned from $2pi$ down to $0.68pi$ in gapped bilayer graphene, in contrast to the constant Berry phase of $2pi$ in pristine bilayer graphene. Particularly, we observe a Berry phase of $pi$, the standard value for single layer graphene. As the Berry phase decreases, the corresponding transmission probability of charge carriers at normal incidence clearly demonstrates a transition from anti-Klein tunneling to nearly perfect Klein tunneling.



rate research

Read More

66 - Xing-Tao An , Wang Yao 2019
Graphene electrons feature a pair of massless Dirac cones of opposite pseudospin chirality at two valleys. Klein tunneling refers to the intriguing capability of these chiral electrons to penetrate through high and wide potential barrier. The two valleys have been treated independently in the literature, where time reversal symmetry dictates that neither the normal incidence transmission nor the angle-averaged one can have any valley polarization. Here we show that, when intervalley scattering by barrier is accounted, graphene electrons normally incident at a superlattice barrier can experience a fully valley-selective Klein tunneling, i.e. perfect transmission in one valley, and perfect reflection in the other. Intervalley backscattering creates staggered pseudospin gaps in the superlattice barrier, which, combined with the valley contrast in pseudospin chirality, determines the valley polarity of Klein tunneling. The angle averaged transmission can have a net valley polarization of 20% for a 5-period barrier, and exceed 75% for a 20-period barrier. Our finding points to an unexpected opportunity to realize valley functionalities in graphene electronics.
Statistical complexity and Fisher-Shannon information are calculated in a problem of quantum scattering, namely the Klein tunneling across a potential barrier in graphene. The treatment of electron wave functions as masless Dirac fermions allows us to compute these statistical measures. The comparison of these magnitudes with the transmission coefficient through the barrier is performed. We show that these statistical measures take their minimum values in the situations of total transparency through the barrier, a phenomenon highly anisotropic for the Klein tunneling in graphene.
We use the Wick-rotated time-dependent supersymmetry to construct models of two-dimensional Dirac fermions in presence of an electrostatic grating. We show that there appears omnidirectional perfect transmission through the grating at specific energy. Additionally to being transparent for incoming fermions, the grating hosts strongly localized states.
Within an effective Dirac theory the low-energy dispersions of monolayer graphene in the presence of Rashba spin-orbit coupling and spin-degenerate bilayer graphene are described by formally identical expressions. We explore implications of this correspondence for transport by choosing chiral tunneling through pn and pnp junctions as a concrete example. A real-space Greens function formalism based on a tight-binding model is adopted to perform the ballistic transport calculations, which cover and confirm previous theoretical results based on the Dirac theory. Chiral tunneling in monolayer graphene in the presence of Rashba coupling is shown to indeed behave like in bilayer graphene. Combined effects of a forbidden normal transmission and spin separation are observed within the single-band n to p transmission regime. The former comes from real-spin conservation, in analogy with pseudospin conservation in bilayer graphene, while the latter arises from the intrinsic spin-Hall mechanism of the Rashba coupling.
The inherent asymmetry of the electric transport in graphene is attributed to Klein tunneling across barriers defined by $textit{pn}$-interfaces between positively and negatively charged regions. By combining conductance and shot noise experiments we determine the main characteristics of the tunneling barrier (height and slope) in a high-quality suspended sample with Au/Cr/Au contacts. We observe an asymmetric resistance $R_{textrm{odd}}=100-70$ $Omega$ across the Dirac point of the suspended graphene at carrier density $|n_{rm G}|=0.3-4 cdot 10^{11}$ cm$^{-2}$, while the Fano factor displays a non-monotonic asymmetry in the range $F_{textrm{odd}} sim 0.03 - 0.1$. Our findings agree with analytical calculations based on the Dirac equation with a trapezoidal barrier. Comparison between the model and the data yields the barrier height for tunneling, an estimate of the thickness of the $textit{pn}$-interface $d < 20$ nm, and the contact region doping corresponding to a Fermi level offset of $sim - 18$ meV. The strength of pinning of the Fermi level under the metallic contact is characterized in terms of the contact capacitance $C_c=19 times 10^{-6}$ F/cm$^2$. Additionally, we show that the gate voltage corresponding to the Dirac point is given by the work function difference between the backgate material and graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا