Do you want to publish a course? Click here

Nitrogen-vacancy centers created by N$^+$ ion implantation through screening SiO$_2$ layers on diamond

78   0   0.0 ( 0 )
 Added by Eisuke Abe
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an ion implantation technique utilizing a screening mask made of SiO$_2$ to control both the depth profile and the dose. By appropriately selecting the thickness of the screening layer, this method fully suppresses the ion channeling, brings the location of the highest NV density to the surface, and effectively reduces the dose by more than three orders of magnitude. With a standard ion implantation system operating at the energy of 10 keV and the dose of 10$^{11}$ cm$^2$ and without an additional etching process, we create single NV centers close to the surface with coherence times of a few tens of $mu$s.



rate research

Read More

We characterize single nitrogen-vacancy (NV) centers created by 10-keV N+ ion implantation into diamond via thin SiO$_2$ layers working as screening masks. Despite the relatively high acceleration energy compared with standard ones (< 5 keV) used to create near-surface NV centers, the screening masks modify the distribution of N$^+$ ions to be peaked at the diamond surface [Ito et al., Appl. Phys. Lett. 110, 213105 (2017)]. We examine the relation between coherence times of the NV electronic spins and their depths, demonstrating that a large portion of NV centers are located within 10 nm from the surface, consistent with Monte Carlo simulations. The effect of the surface on the NV spin coherence time is evaluated through noise spectroscopy, surface topography, and X-ray photoelectron spectroscopy.
The advancement of quantum optical science and technology with solid-state emitters such as nitrogen-vacancy (NV) centers in diamond critically relies on the coherence of the emitters optical transitions. A widely employed strategy to create NV centers at precisely controlled locations is nitrogen ion implantation followed by a high-temperature annealing process. We report on experimental data directly correlating the NV center optical coherence to the origin of the nitrogen atom. These studies reveal low-strain, narrow-optical-linewidth ($<500$ MHz) NV centers formed from naturally-occurring $^{14}$N atoms. In contrast, NV centers formed from implanted $^{15}$N atoms exhibit significantly broadened optical transitions ($>1$ GHz) and higher strain. The data show that the poor optical coherence of the NV centers formed from implanted nitrogen is not due to an intrinsic effect related to the diamond or isotope. These results have immediate implications for the positioning accuracy of current NV center creation protocols and point to the need to further investigate the influence of lattice damage on the coherence of NV centers from implanted ions.
Nitrogen-vacancy (NV-) color centers in diamond were created by implantation of 7 keV 15N (I = 1/2) ions into type IIa diamond. Optically detected magnetic resonance was employed to measure the hyperfine coupling of the NV- centers. The hyperfine spectrum from 15NV- arising from implanted 15N can be distinguished from 14NV- centers created by native 14N (I = 1) sites. Analysis indicates 1 in 40 implanted 15N atoms give rise to an optically observable 15NV- center. This report ultimately demonstrates a mechanism by which the yield of NV- center formation by nitrogen implantation can be measured.
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was measured to be 60 to 70 nm. The findings highlight a strong dependence of NV incorporation on crystal size, particularly with crystals less than 50 nm in size.
We show a marked reduction in the emission from nitrogen-vacancy (NV) color centers in single crystal diamond due to exposure of the diamond to hydrogen plasmas ranging from 700{deg}C to 1000{deg}C. Significant fluorescence reduction was observed beneath the exposed surface to at least 80mm depth after ~10 minutes, and did not recover after post-annealing in vacuum for seven hours at 1100{deg}C. We attribute the fluorescence reduction to the formation of NVH centers by the plasma induced diffusion of hydrogen. These results have important implications for the formation of nitrogen-vacancy centers for quantum applications, and inform our understanding of the conversion of nitrogen-vacancy to NVH, whilst also providing the first experimental evidence of long range hydrogen diffusion through intrinsic high-purity diamond material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا