No Arabic abstract
We examine the spectral properties of single and multiple matter-wave dark solitons in Bose-Einstein condensates confined in parabolic traps, where the scattering length is periodically modulated. In addition to the large-density limit picture previously established for homogeneous nonlinearities, we explore a perturbative analysis in the vicinity of the linear limit, which provides good agreement with the observed spectral modes. Between these two analytically tractable limits, we use numerical computations to fill in the relevant intermediate regime. We find that the scattering length modulation can cause a variety of features absent for homogeneous nonlinearities. Among them, we note the potential oscillatory instability even of the single dark soliton, the potential absence of instabilities in the immediate vicinity of the linear limit for two dark solitons, and the existence of an exponential instability associated with the in-phase motion of three dark solitons.
In the present work, we explore the existence, stability and dynamics of single and multiple vortex ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states, in the vicinity of the linear limit, for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance, for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particle picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. Finally, we examine some representative instability scenarios of the multi-ring dynamics including breakup and reconnections, as well as the transient formation of vortex lines.
Since the realization of Bose-Einstein condensates (BECs) in optical potentials, intensive experimental and theoretical investigations have been carried out for matter-wave solitons, coherent structures, modulational instability (MI), and nonlinear excitation of BEC matter waves, making them objects of fundamental interest in the vast realm of nonlinear physics and soft condensed-matter physics. Ubiquitous models, which are relevant to the description of diverse nonlinear media are provided by the nonlinear Schrodinger (NLS), alias Gross-Pitaevskii (GP) equations. In many settings, nontrivial solitons and coherent structures, which do not exist or are unstable in free space, can be created or stabilized by means of various management techniques, which are represented by NLS and GP equations with spatiotemporal coefficients in front of linear or nonlinear terms. Developing this direction of research in various settings, efficient schemes of the spatiotemporal modulation of coefficients in the NLS/GP equations have been designed to engineer desirable robust nonlinear modes. This direction and related ones are the main topic of the present review. A broad and important theme is the creation and control of 1D solitons in BEC by means of combination of the temporal or spatial modulation of the nonlinearity strength and a time-varying trapping potential. An essential ramification of this topic is analytical and numerical analysis of MI of continuous-wave states, and control of the nonlinear development of MI. In addition to that, the review also includes some topics that do not directly include spatiotemporal modulation but address physically important phenomena which demonstrate similar soliton dynamics. These are soliton motion in binary BEC, three-component solitons in spinor BEC, and dynamics of two-component solitons under the action of spin-orbit coupling.
We study stability of solitary vortices in the two-dimensional trapped Bose-Einstein condensate (BEC) with a spatially localized region of self-attraction. Solving the respective Bogoliubov-de Gennes equations and running direct simulations of the underlying Gross-Pitaevskii equation reveals that vortices with topological charge up to S = 6 (at least) are stable above a critical value of the chemical potential (i.e., below a critical number of atoms, which sharply increases with S). The largest nonlinearity-localization radius admitting the stabilization of the higher-order vortices is estimated analytically and accurately identified in a numerical form. To the best of our knowledge, this is the first example of a setting which gives rise to stable higher-order vortices, S > 1, in a trapped self-attractive BEC. The same setting may be realized in nonlinear optics too.
We investigate dark-bright vector solitary wave solutions to the coupled non-linear Schrodinger equations which describe an inhomogeneous two-species Bose-Einstein condensate. While these structures are well known in non-linear fiber optics, we show that spatial inhomogeneity strongly affects their motion, stability, and interaction, and that current technology suffices for their creation and control in ultracold trapped gases. The effects of controllably different interparticle scattering lengths, and stability against three-dimensional deformations, are also examined.
Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the generalized nonlinear Schroedinger or Gross-Pitaevskii equation. Analytical theory is illustrated by examples of dynamics of ring solitons in light beams propagating through a photorefractive medium and in non-uniform condensates confined in axially symmetric traps. Analytical results agree very well with the results of our numerical simulations.