No Arabic abstract
An intense, short laser pulse incident on a transparent dielectric can excite electrons from valence to the conduction band. As these electrons undergo scattering, both from phonons and ions, they emit bremsstrahlung radiation. Here we present a theory of bremsstrahlung emission appropriate for laser pulse-dielectric interactions. Simulations of the interaction, incorporating this theory, illustrate characteristics of the radiation (power, energy and spectra) for arbitrary ratios of electron collision frequency to radiation frequency. The conversion efficiency of laser pulse energy into bremsstrahlung radiation depends strongly on both the intensity and duration of the pulse, saturating at values of about 10e-5. Depending on whether the intensity is above or below the damage threshold of the material, the emission can originate either from the surface or the bulk of the dielectric respectively. The bremsstrahlung emission may provide a broadband light source for diagnostics.
Accelerated charges radiate, and therefore must lose energy. The impact of this energy loss on particle motion, called radiation reaction, becomes significant in intense-laser matter interactions, where it can reduce collision energies, hinder particle acceleration schemes, and is seemingly unavoidable. Here we show that this common belief breaks down in short laser pulses, and that energy losses and radiation reaction can be controlled and effectively switched off by appropriate tuning of the pulse length. This quenching of emission is impossible in classical physics, but becomes possible in QED due to the discrete nature of quantum emissions.
We report on experimental results in a new regime of a relativistic light-matter interaction employing mid-infrared (3.9-micrometer wavelength) high-intensity femtosecond laser pulses. In the laser generated plasma, the electrons reach relativistic energies already at rather low intensities due to the fortunate lambda^2-scaling of the kinetic energy with the laser wavelength. The lower intensity suppresses optical field ionization and creation of the pre-plasma at the rising edge of the laser pulse efficiently, enabling an enhanced efficient vacuum heating of the plasma. The lower critical plasma density for long-wavelength radiation can be surmounted by using nanowires instead of flat targets. In our experiments about 80% of the incident laser energy has been absorbed resulting in a long living, keV-temperature, high-charge state plasma with a density of more than three orders of magnitude above the critical value. Our results pave the way to laser-driven experiments on laboratory astrophysics and nuclear physics at a high repetition rate.
The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and collimation. Regimes based on Radiation Pressure Acceleration (RPA) might be the dominant ones at ultrahigh intensities and be most suitable for specific applications. This regime may be reached already with present-day intensities using circularly polarized (CP) pulses thanks to the suppression of fast electron generation, so that RPA dominates over sheath acceleration at any intensity. We present a brief review of previous work on RPA with CP pulses and a few recent results. Parametric studies in one dimension were performed to identify the optimal thickness of foil targets for RPA and to study the effect of a short-scalelength preplasma. Three-dimensional simulations showed the importance of ``flat-top radial intensity profiles to minimise the rarefaction of thin targets and to address the issue of angular momentum conservation and absorption.
Non-equilibrium processes following the irradiation of atomic clusters with short pulses of vacuum ultraviolet radiation are modelled using kinetic Boltzmann equations. The dependence of the ionization dynamics on the cluster size is investigated. The predictions on: (i) the maximal and average ion charge created, (ii) ion charge state distribution, (iii) average energy absorbed per atom, (iv) spatial charge distribution, and (v) thermalization scales are obtained for spherical xenon clusters containing: 20, 70, 2500 and 90000 atoms. These clusters were exposed to single rectangular pulses of vacuum ultraviolet radiation of various pulse intensities, I ~ 10^{12}-10^{14} W/cm^2 and durations < 50 fs, at a fixed integrated radiation flux of F=0.4 J/cm^2. The results obtained are found to be in good agreement with the available experimental data, especially the dependence on the cluster size, if it is assumed that the ions from the positively charged outer layer of the cluster constitute the dominant contribution to the experimentally measured ion charge state distribution.
Adapting a plane hydrodynamical model we briefly revisit the study of the impact of a very short and intense laser pulse onto a diluted plasma, the formation of a plasma wave, its wave-breaking, the occurrence of the slingshot effect.